

#### **General Description**

BDE-BW2837 is a Wi-Fi 2.4GHz and 5GHz Dual-Band and Bluetooth & Bluetooth Low Energy (BLE) Dual-mode high throughput and extended range along with Wi-Fi and Bluetooth coexistence in a power-optimized design.



### **Key Features**

#### General

- Wi-Fi 2.4GHz/5GHz Dual-Band and Bluetooth & BLE Dual-Mode.
- Integrates RF, Power Amplifiers (PAs), Clock, RF Switches, Filters, Passives, and Power Management
- Operating Temperature: -40°C to +85°C
- Dimension: 13.3 × 13.4 × 2.0 mm
- LGA-100 pin Package
- Certifications
- FCC ID: 2ABRU-BW2837, IC: 25657-BW2837, CE-**RED** compliant
- Wi-Fi-Bluetooth Single Antenna Coexistence

#### Bluetooth® and BLE

- Bluetooth 4.2 Secure Connection Compliant and
- CSA2 Support
- Host Controller Interface (HCI) Transport for
- Bluetooth Over UART
- Dedicated Audio Processor Support of SBC Encoding + A2DP
- Certified Bluetooth- and BLE Dual mode Stack
- BLE up to 10 low energy connections

#### Wi-Fi®

- WLAN Baseband Processor and RF Transceiver Support of IEEE Std 802.11a, 802.11b, 802.11g, and 802.11n
- 20- and 40-MHz SISO and 20-MHz 2 × 2 MIMO at 2.4 GHz for High Throughput: 80 Mbps (TCP), 100 Mbps (UDP)
- 2.4-GHz MRC Support for Extended Range and 5-GHz Diversity Capable
- Wi-Fi Direct Concurrent Operation (Multichannel, Multirole)
- Fully calibrated system (production calibration not required)
- Hardware-based encryption-decryption using 64-, 128-, and 256-bit WEP, TKIP, or AES keys
- Requirements for Wi-Fi-protected access (WPA and WPA2.0) and IEEE Std 802.11i (includes hardware-accelerated Advanced Encryption Standard [AES])
- Advanced coexistence scheme with Bluetooth and Bluetooth low energy wireless technology
- 4-bit SDIO host interface, including high speed (HS) and V3 modes
- Low Wi-Fi Power Consumption in Connected Idle  $(< 800 \mu A)$
- Configurable Wake on WLAN Filters to Only Wake Up the System

## **Applications**

- Internet of Things (IoT)
- Multimedia
- Home Electronics
- Home Appliances and White Goods
- Industrial and Home Automation
- Smart Gateway and Metering
- Video Conferencing
- Video Camera and Security



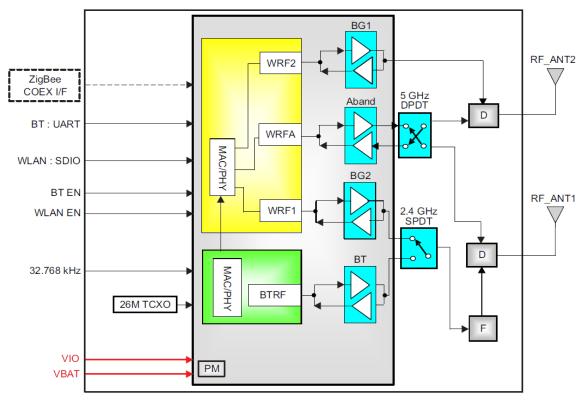
## **Contents**

|     | eral Description1                                                                |
|-----|----------------------------------------------------------------------------------|
| Key | Features1                                                                        |
|     | lications1                                                                       |
|     | tents2                                                                           |
| 1.  | References3                                                                      |
| 2.  | Block Diagram4                                                                   |
| 3.  | Terminal Configuration and Functions 5                                           |
|     | 3.1 Pin Diagram5                                                                 |
|     | 3.2 Pin Attributes and Pin Multiplexing5                                         |
| 4.  | Specifications 8                                                                 |
|     | 4.1 General Requirements and Operating                                           |
|     | Conditions 8                                                                     |
|     | 4.1.1 Absolute Maximum Ratings8                                                  |
|     | 4.1.2 ESD Ratings 8                                                              |
|     | 4.1.3 Recommended Operating Conditions 9                                         |
|     | 4.1.4 External Digital Slow Clock                                                |
|     | Requirements9                                                                    |
|     | 4.2 WLAN Performance                                                             |
|     | 4.2.1 WLAN 2.4-GHz Receiver                                                      |
|     | Characteristics                                                                  |
|     | 4.2.2 WLAN 2.4-GHZ Transmitter PowerTI 4.2.3 WLAN 5-GHz Receiver Characteristics |
|     |                                                                                  |
|     | 12<br>4.2.4 WLAN 5-GHz Transmitter Power 12                                      |
|     | 4.2.5 WLAN Power Consumption                                                     |
|     | 4.3 Bluetooth Performance                                                        |
|     | 4.3.1 BR, EDR Receiver Characteristics—In-                                       |
|     | Band Signals14                                                                   |
|     | 4.3.2 Bluetooth Transmitter, BR                                                  |
|     | 4.3.3 Bluetooth Transmitter, EDR                                                 |
|     | 4.3.4 Bluetooth Modulation, BR                                                   |
|     | 4.3.5 Bluetooth Modulation, EDR                                                  |
|     | 4.3.6 Bluetooth BR / EDR Power                                                   |
|     | Consumption                                                                      |
|     | 4.4 Bluetooth Low Energy Performance 17                                          |
|     | 4.4.1 Receiver Characteristics – In-Band                                         |
|     | Signals 17                                                                       |

|     | 4.4.2 Bluetooth low energy Tra             |         |
|-----|--------------------------------------------|---------|
|     | Characteristics                            |         |
|     | 4.4.3 Bluetooth low energy Mo              |         |
|     | Characteristics                            |         |
|     | 4.4.4 Bluetooth Low Energy                 |         |
| _   | Consumption                                |         |
| 5.  | Typical RF Parameters and Power Consu      | mptions |
| 6.  | Power Management                           | 20      |
|     | 6.1 Internal DC-DCs                        | 20      |
|     | 6.2 Power-Up and Shut-Down States          | 20      |
|     | 6.3 Chip Top-level Power-Up Sequence       | 21      |
|     | 6.4 WLAN Power-Up Sequence                 | 22      |
|     | 6.5 Bluetooth-Bluetooth Low Energy Po      | wer-Up  |
|     | Sequence                                   | 22      |
| 7.  | WLAN SDIO Transport Layer                  | 23      |
|     | 7.1 SDIO Default Rate Timing Specification | ons23   |
|     | 7.2 SDIO HS Switching Characteristics      | 24      |
| 8.  | HCI UART Shared-Transport Layers           | for All |
| Fur | nctional Blocks (Except WLAN)              | 26      |
| 9.  | Bluetooth Codec-PCM (Audio)                | Timing  |
| Spe | ecifications                               | 28      |
| 10. | Reference Design                           | 29      |
|     | 10.1 Block Diagram                         | 29      |
|     | 10.2 Typical Application Schematic         | 30      |
|     | 10.3 Design Recommendations                | 31      |
| 11. | Baking and SMT Recommendations             | 33      |
|     | 11.1 Baking Recommendations                | 33      |
|     | 11.2 SMT Recommendations                   |         |
| 12. | Mechanical Specifications                  | 34      |
|     | 12.1 Dimensions                            |         |
|     | 12.2 PCB Footprint                         | 34      |
|     | 12.3 Marking                               |         |
| 13. | Packaging Information                      | 36      |
| 14. | Ordering Information                       | 37      |
| 15. | Revision History                           | 37      |



Datasheet


#### 1. References

- [1] WL1837MOD Datasheet
  - $\frac{\text{https://www.ti.com/lit/ds/symlink/wl1837mod.pdf?ts=1618144492050\&ref\_url=https\%253A\%252F\%252Fww}{\text{w.ti.com\%252Fproduct\%252FWL1837MOD\%253FkeyMatch\%253DWL1837MOD\%2526tisearch\%253Dsea}}{\text{rch-everything\%2526usecase\%253DGPN}}$
- [2] WL18xx Module Hardware Integration Guide (Rev. B) https://www.ti.com/lit/ug/swru437b/swru437b.pdf?ts=1618116072326
- [3] WL1837MODCOM8I WLAN MIMO and BT Module EVB for TI Sitara Platform (Rev. A) https://www.ti.com/lit/ug/swru382a/swru382a.pdf?ts=1618129156502



## 2. Block Diagram

BDE-BW2837 is a Wi-Fi 2.4GHz and 5GHz Dual-Band and Bluetooth & Bluetooth Low Energy (BLE) Dual-mode high throughput and extended range along with Wi-Fi and Bluetooth coexistence in a power-optimized design.



NOTE: Dashed lines indicate optional configurations and are not applied by default.

Figure 2-1. BDE-BW2837 Module Block Diagram

Datasheet

## 3. Terminal Configuration and Functions

## 3.1 Pin Diagram

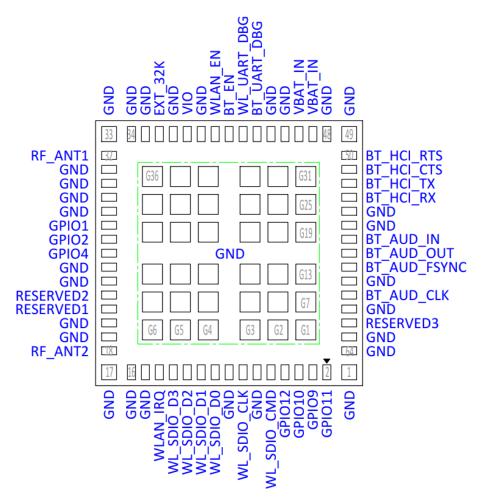



Figure 3-1. Pin Diagram Bottom View

## 3.2 Pin Attributes and Pin Multiplexing

Table 3-1. Pin Description

| Pin# | Pin Name    | Type | Shut Down State <sup>(1)</sup> | After Power Up <sup>(1)</sup> | Voltage Level | Description                               |
|------|-------------|------|--------------------------------|-------------------------------|---------------|-------------------------------------------|
| 1    | GND         | GND  |                                |                               | -             | Ground                                    |
| 2    | GPIO11      | I/O  | PD                             | PD                            | 1.8V          | Reserved for future use.  NC if not used. |
| 3    | GPIO9       | I/O  | PD                             | PD                            | 1.8V          | Reserved for future use.  NC if not used. |
| 4    | GPIO10      | I/O  | PU                             | PU                            | 1.8V          | Reserved for future use.  NC if not used. |
| 5    | GPIO12      | I/O  | PU                             | PU                            | 1.8V          | Reserved for future use.  NC if not used. |
| 6    | WL_SDIO_CMD | I/O  | HiZ                            | HiZ                           | 1.8V          | WLAN SDIO Command <sup>(2)</sup>          |
| 7    | GND         | GND  |                                |                               | -             | Ground                                    |
| 8    | WL_SDIO_CLK | I    | HiZ                            | HiZ                           | 1.8V          | WLAN SDIO Clock.                          |



Datasheet

| Pin# | Pin Name   | Туре | Shut Down State <sup>(1)</sup> | After Power Up <sup>(1)</sup> | Voltage Level | Description                                                                                                                                                                                                                                                     |
|------|------------|------|--------------------------------|-------------------------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      |            |      |                                | -                             |               | Must be driven by the host.                                                                                                                                                                                                                                     |
| 9    | GND        | GND  |                                |                               | -             | Ground                                                                                                                                                                                                                                                          |
| 10   | WL_SDIO_D0 | I/O  | HiZ                            | HiZ                           | 1.8V          | WLAN SDIO Data bit 0(2)                                                                                                                                                                                                                                         |
| 11   | WL_SDIO_D1 | I/O  | HiZ                            | HiZ                           | 1.8V          | WLAN SDIO Data bit 1(2                                                                                                                                                                                                                                          |
| 12   | WL_SDIO_D2 | I/O  | HiZ                            | HiZ                           | 1.8V          | WLAN SDIO Data bit 2 <sup>(2)</sup>                                                                                                                                                                                                                             |
| 13   | WL_SDIO_D3 | I/O  | HiZ                            | PU                            | 1.8V          | WLAN SDIO Data bit 3. Changes state to PU at WL_EN or BT_EN assertion for card detects. Later disabled by software during initialization. (2)                                                                                                                   |
| 14   | WLAN_IRQ   | 0    | PD                             | 0                             | 1.8V          | SDIO available, interrupt out. Active high. (For WL_RS232_TX/RX pull up is at power up.) Set to rising edge (active high) on power up. The Wi - Fi interrupt line can be configured by the driver according to the IRQ configuration (Polarity / Level / Edge). |
| 15   | GND        | GND  |                                |                               | -             | Ground                                                                                                                                                                                                                                                          |
| 16   | GND        | GND  |                                |                               | -             | Ground                                                                                                                                                                                                                                                          |
| 17   | GND        | GND  |                                |                               | -             | Ground                                                                                                                                                                                                                                                          |
| 18   | RF_ANT2    | ANA  |                                |                               | -             | WLAN 2.4GHz RF Port.  NC if not used.                                                                                                                                                                                                                           |
| 19   | GND        | GND  |                                |                               | -             | Ground                                                                                                                                                                                                                                                          |
| 20   | GND        | GND  |                                |                               | -             | Ground                                                                                                                                                                                                                                                          |
| 21   | RESERVED1  | 1    | PD                             | PD                            | 1.8V          | Reserved for future use.  NC if not used.                                                                                                                                                                                                                       |
| 22   | RESERVED2  | I    | PD                             | PD                            | 1.8V          | Reserved for future use.  NC if not used.                                                                                                                                                                                                                       |
| 23   | GND        | GND  |                                |                               | -             | Ground                                                                                                                                                                                                                                                          |
| 24   | GND        | GND  |                                |                               | -             | Ground                                                                                                                                                                                                                                                          |
| 25   | GPIO4      | I/O  | PD                             | PD                            | 1.8V          | Reserved for future use.  NC if not used.                                                                                                                                                                                                                       |
| 26   | GPIO2      | I/O  | PD                             | PD                            | 1.8V          | WL_RS232_RX (when WLAN_IRQ = 1 at power up)                                                                                                                                                                                                                     |
| 27   | GPIO1      | I/O  | PD                             | PD                            | 1.8V          | WL_RS232_TX<br>(when WLAN_IRQ = 1 at<br>power up)                                                                                                                                                                                                               |
| 28   | GND        | GND  |                                |                               | -             | Ground                                                                                                                                                                                                                                                          |
| 29   | GND        | GND  |                                |                               | -             | Ground                                                                                                                                                                                                                                                          |
| 30   | GND        | GND  |                                |                               | -             | Ground                                                                                                                                                                                                                                                          |
| 31   | GND        | GND  |                                |                               | -             | Ground                                                                                                                                                                                                                                                          |
| 32   | RF_ANT1    | ANA  |                                |                               | -             | WLAN / Bluetooth 2.4GHz RF<br>Port                                                                                                                                                                                                                              |
| 33   | GND        | GND  |                                |                               | -             | Ground                                                                                                                                                                                                                                                          |
| 34   | GND        | GND  |                                |                               | -             | Ground                                                                                                                                                                                                                                                          |
| 35   | GND        | GND  |                                |                               | -             | Ground                                                                                                                                                                                                                                                          |
| 36   | EXT_32K    | ANA  |                                |                               | -             | Input sleep clock: 32.768 kHz                                                                                                                                                                                                                                   |
| 37   | GND        | GND  |                                |                               | -             | Ground                                                                                                                                                                                                                                                          |



Datasheet

| Pin#   | Pin Name          | Туре | Shut Down State <sup>(1)</sup> | After Power Up <sup>(1)</sup> | Voltage Level | Description                                                               |
|--------|-------------------|------|--------------------------------|-------------------------------|---------------|---------------------------------------------------------------------------|
| 38     | VIO               | POW  | PD                             | PD                            | 1.8V          | Connect to 1.8V external VIO                                              |
| 39     | GND               | GND  |                                |                               | -             | Ground                                                                    |
| 40     | WLAN_EN           | 1    | PD                             | PD                            | 1.8V          | Mode setting: high = enable                                               |
| 41     | BT_EN             | I    | PD                             | PD                            | 1.8V          | Mode setting: high =enable.  If Bluetooth is not used, connect to ground. |
| 42     | WL_UART_DBG       | 0    | PU                             | PU                            | 1.8V          | Option: WLAN logger                                                       |
| 43     | BT_UART_DEB<br>UG | 0    | PU                             | PU                            | 1.8V          | Option: Bluetooth logger                                                  |
| 44     | GND               | GND  |                                |                               | -             | Ground                                                                    |
| 45     | GND               | GND  |                                |                               | -             | Ground                                                                    |
| 46     | VBAT_IN           | POW  |                                |                               | VBAT          | Power supply input, 2.9 to 4.8 V                                          |
| 47     | VBAT_IN           | POW  |                                |                               | VBAT          | Power supply input, 2.9 to 4.8 V                                          |
| 48     | GND               | GND  |                                |                               | -             | Ground                                                                    |
| 49     | GND               | GND  |                                |                               | -             | Ground                                                                    |
| 50     | BT_HCI_RTS        | 0    | PU                             | PU                            | 1.8V          | UART RTS to host. NC if not used.                                         |
| 51     | BT_HCI_CTS        | 1    | PU                             | PU                            | 1.8V          | UART CTS to host. NC if not used.                                         |
| 52     | BT_HCI_TX         | 0    | PU                             | PU                            | 1.8V          | UART TX to host. NC if not used.                                          |
| 53     | BT_HCI_RX         | 1    | PU                             | PU                            | 1.8V          | UART RX to host. NC if not used.                                          |
| 54     | GND               | GND  |                                |                               | -             | Ground                                                                    |
| 55     | GND               | GND  |                                |                               | -             | Ground                                                                    |
| 56     | BT_AUD_IN         | I    | PD                             | PD                            | 1.8V          | Bluetooth PCM/I2S bus. Data in. NC if not used.                           |
| 57     | BT_AUD_OUT        | 0    | PD                             | PD                            | 1.8V          | Bluetooth PCM/I2S bus. Data in. NC if not used.                           |
| 58     | BT_AUD_FSYN<br>C  | I/O  | PD                             | PD                            | 1.8V          | Bluetooth PCM/I2S bus. Data in. NC if not used.                           |
| 59     | GND               | GND  |                                |                               | -             | Ground                                                                    |
| 60     | BT_AUD_CLK        | I/O  | PD                             | PD                            | 1.8V          | Bluetooth PCM/I2S bus. Data in. NC if not used.                           |
| 61     | GND               | GND  |                                |                               | -             | Ground                                                                    |
| 62     | RESERVED3         | 0    | PD                             | PD                            | 1.8V          | Reserved for future use.  NC if not used.  Option: External TCXO.         |
| 63     | GND               | GND  |                                |                               | =             | Ground                                                                    |
| 64     | GND               | GND  |                                |                               | =             | Ground                                                                    |
| G1~G36 | GND               | GND  |                                |                               | -             | Ground                                                                    |

<sup>(1)</sup> PU = pullup; PD = pulldown.

<sup>(2)</sup> Host must provide PU using a 10-K resistor for all non-CLK SDIO signals.

## 4. Specifications

## 4.1 General Requirements and Operating Conditions

All specifications are based on typical values VBAT = 3.7 V, VIO = 1.8 V, over operating free-air temperature range unless otherwise noted.

#### 4.1.1 Absolute Maximum Ratings (1)

| PARAMETER                             | MIN  | MAX                | UNIT |
|---------------------------------------|------|--------------------|------|
| V <sub>BAT</sub>                      |      | 4.8 <sup>(2)</sup> | ٧    |
| V <sub>IO</sub>                       | -0.5 | 2.1                | ٧    |
| Input voltage to analog pins          | -0.5 | 2.1                | V    |
| Input voltage limits (CLK_IN)         | -0.5 | VDD_IO             | V    |
| Input voltage to all other pins       | -0.5 | (VDD_IO + 0.5)     | V    |
| Operating ambient temperature         | -40  | 85 <sup>(3)</sup>  | °C   |
| Storage temperature, T <sub>stg</sub> | -40  | 85                 | °C   |

- (1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
- (2) 4.8 V cumulative to 2.33 years, including charging dips and peaks
- (3) In the system, a control mechanism exists to ensure  $T_i < 125$ °C. When  $T_i$  approaches this threshold, the control mechanism manages the transmitter patterns.

#### 4.1.2 ESD Ratings

|                              |                                                                     | VALUE | UNIT |
|------------------------------|---------------------------------------------------------------------|-------|------|
|                              | Human body model (HBM), per ANSI/ESDA/JEDEC JS001(1)                | ±1000 |      |
| VESD Electrostatic discharge | Charged device model (CDM), per JEDEC specification JESD22-C101 (2) | ±250  | V    |

- (1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
- (2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.



Datasheet

#### **4.1.3 Recommended Operating Conditions**

|                                 | PARAMETER                                                                         |                        | MIN           | TYP      | MAX        | UNIT |
|---------------------------------|-----------------------------------------------------------------------------------|------------------------|---------------|----------|------------|------|
| V <sub>BAT</sub> <sup>(1)</sup> | DC supply range for all modes                                                     |                        | 2.9           | 3.7      | 4.8        | V    |
| $V_{IO}$                        | 1.8-V I/O ring power supply voltage                                               |                        | 1.62          | 1.8      | 1.95       | V    |
| $V_{IH}$                        | I/O high-level input voltage                                                      |                        | 0.65 × VDD_IO |          | VDD_IO     | V    |
| $V_{IL}$                        | I/O low-level input voltage                                                       |                        | 0             | 0.3      | 5 × VDD_IO | V    |
| V <sub>IH_EN</sub>              | Enable inputs high-level input voltage                                            |                        | 1.365         |          | VDD_IO     | V    |
| $V_{IL_{EN}}$                   | Enable inputs low-level input voltage                                             |                        | 0             |          | 0.4        | V    |
| V <sub>OH</sub>                 | High-level output voltage                                                         | @ 4 mA                 | VDD_IO - 0.45 |          | VDD_IO     | V    |
| $V_{OL}$                        | Low-level output voltage                                                          | @ 4 mA                 | 0             |          | 0.45       | V    |
| $T_r,T_f$                       | Input transitions time $T_r$ , $T_f$ from 10% to 90% (digital I/O) <sup>(2)</sup> |                        | 1             |          | 10         | ns   |
| Гг                              | Output rise time from 10% to 90% (digital pins) <sup>(2)</sup>                    | C <sub>L</sub> < 25 pF |               |          | 5.3        | ns   |
| $\Gamma_{ m f}$                 | Output fall time from 10% to 90% (digital pins) <sup>(2)</sup>                    | C <sub>L</sub> < 25 pF |               |          | 4.9        | ns   |
|                                 | Ambient operating temperature                                                     |                        | -40           |          | 85         | ٥C   |
| Maximum power                   | WLAN operation                                                                    |                        | -             | <u> </u> | 2.8        |      |
| dissipation                     | Bluetooth operation                                                               |                        |               |          | 0.2        | W    |

<sup>(1) 4.8</sup> V is applicable only for 2.33 years (30% of the time). Otherwise, maximum  $V_{BAT}$  must not exceed 4.3 V.

#### 4.1.4 External Digital Slow Clock Requirements

The supported digital slow clock is 32.768 kHz digital (square wave). All core functions share a single input.

|                                   | <b>5</b> ,                                         |                      |               |       |               |                   |
|-----------------------------------|----------------------------------------------------|----------------------|---------------|-------|---------------|-------------------|
|                                   |                                                    | CONDITION            | MIN           | TYP   | MAX           | UNIT              |
|                                   | Input slow clock frequency                         |                      |               | 32768 |               | Hz                |
|                                   | Input alow aloak accuracy (Initial Litema Ligaina) | WLAN,                |               |       | ±250          |                   |
|                                   | Input slow clock accuracy (Initial + temp + aging) | Bluetooth            |               |       | ±250          | ppm               |
| $T_r$ , $T_f$                     | Input transition time (10% to 90%)                 |                      |               |       | 200           | ns                |
|                                   | Frequency input duty cycle                         |                      | 15%           | 50%   | 85%           |                   |
|                                   |                                                    | Square               | 0.65 x VDD_IO |       | VDD_IO        |                   |
| V <sub>IH</sub> , V <sub>IL</sub> | Input voltage limits                               | wave, DC-<br>coupled | 0             | (     | 0.35 x VDD_IO | $V_{\text{peak}}$ |
|                                   | Input impedance                                    |                      | 1             |       |               | $M\Omega$         |
|                                   | Input capacitance                                  |                      |               |       | 5             | pF                |

<sup>(2)</sup> Applies to all digital lines except SDIO, UART, I2C, PCM and slow clock lines

**Datasheet** 

Wi-Fi Dual-Band/Bluetooth, BLE Dual-Mode Module

#### ,

## 4.2 WLAN Performance

All specifications are over operating free-air temperature range. All RF and performance numbers are aligned to the module pin (unless otherwise noted).

#### 4.2.1 WLAN 2.4-GHz Receiver Characteristics

| PARAMETER                                                                                     | CONDITION                | MIN   | TYP MAX       | UNIT |  |  |  |
|-----------------------------------------------------------------------------------------------|--------------------------|-------|---------------|------|--|--|--|
| 1                                                                                             | RF_ANT1 pin 2.4-GHz SISO |       |               |      |  |  |  |
| Operation frequency range                                                                     |                          | 2412  | 2484          | MHz  |  |  |  |
| -                                                                                             | 1 Mbps DSSS              |       | -95.0         |      |  |  |  |
|                                                                                               | 2 Mbps DSSS              |       | -92.0         |      |  |  |  |
|                                                                                               | 5.5 Mbps CCK             |       | -89.2         |      |  |  |  |
| Sensitivity: 20-MHz bandwidth. At < 10% PER limit                                             | 11 Mbps CCK              |       | -86.3         |      |  |  |  |
|                                                                                               | 6 Mbps OFDM              |       | -91.0         |      |  |  |  |
|                                                                                               | 9 Mbps OFDM              |       | -89.0         |      |  |  |  |
|                                                                                               | 12 Mbps OFDM             |       | -88.0         |      |  |  |  |
|                                                                                               | 18 Mbps OFDM             |       | -85.5         |      |  |  |  |
|                                                                                               | 24 Mbps OFDM             |       | -82.5         |      |  |  |  |
|                                                                                               | 36 Mbps OFDM             |       | -79.0         |      |  |  |  |
|                                                                                               | 48 Mbps OFDM             |       | -74.0         |      |  |  |  |
|                                                                                               | 54 Mbps OFDM             |       | <b>–72.5</b>  |      |  |  |  |
|                                                                                               | MCS0 MM 4K               |       | -89.3         |      |  |  |  |
|                                                                                               | MCS1 MM 4K               |       | -86.5         | dBm  |  |  |  |
|                                                                                               | MCS2 MM 4K               |       | -84.5         |      |  |  |  |
|                                                                                               | MCS3 MM 4K               |       | <b>–</b> 81.5 |      |  |  |  |
|                                                                                               | MCS4 MM 4K               |       | -78.0         |      |  |  |  |
|                                                                                               | MCS5 MM 4K               |       | -73.5         |      |  |  |  |
|                                                                                               | MCS6 MM 4K               |       | <b>-71.5</b>  |      |  |  |  |
|                                                                                               | MCS7 MM 4K               |       | -70.0         |      |  |  |  |
|                                                                                               | MCS0 MM 4K 40 MHz        |       | -86.0         |      |  |  |  |
|                                                                                               | MCS7 MM 4K 40 MHz        |       | -66.3         |      |  |  |  |
|                                                                                               | MCS0 MM 4K MRC           |       | -91.0         |      |  |  |  |
|                                                                                               | MCS7 MM 4K MRC           |       | -73.0         |      |  |  |  |
|                                                                                               | MCS13 MM 4K              |       | -70.0         |      |  |  |  |
|                                                                                               | MCS14 MM 4K              |       | -69.0         |      |  |  |  |
|                                                                                               | MCS15 MM 4K              |       | -68.3         |      |  |  |  |
|                                                                                               | OFDM                     | -20.0 | -10.0         |      |  |  |  |
| Maximum input level                                                                           | CCK                      | -10.0 | -6.0          | dBm  |  |  |  |
|                                                                                               | DSSS                     | -4.0  | -1.0          |      |  |  |  |
| Adia and about a location Canality its layer 1.2 dB for                                       | 2 Mbps DSSS              | 42.0  |               |      |  |  |  |
| Adjacent channel rejection: Sensitivity level +3 dB for OFDM; Sensitivity level +6 dB for 11b | 11 Mbps CCK              | 38.0  |               | dB   |  |  |  |
| Of Divi, Serisitivity level +0 ub tol 11b                                                     | 54 Mbps OFDM             | 2.0   |               |      |  |  |  |
| RX leakage                                                                                    |                          |       | -70           | dBm  |  |  |  |
| PER floor                                                                                     |                          |       | 1.0%          |      |  |  |  |
| RSSI accuracy                                                                                 |                          |       | ±3            | dB   |  |  |  |



Datasheet

#### 4.2.2 WLAN 2.4-GHz Transmitter Power

| PARAMETER                                          | CONDITION <sup>(1)</sup> | MIN TYP                  | MAX  | UNIT |  |  |
|----------------------------------------------------|--------------------------|--------------------------|------|------|--|--|
|                                                    | F                        | RF_ANT1 Pin 2.4-GHz SISO |      |      |  |  |
|                                                    | 1 Mbps DSSS              | 17.3                     |      |      |  |  |
|                                                    | 2 Mbps DSSS              | 17.3                     |      |      |  |  |
|                                                    | 5.5 Mbps CCK             | 17.3                     |      |      |  |  |
|                                                    | 11 Mbps CCK              | 17.3                     |      |      |  |  |
|                                                    | 6 Mbps OFDM              | 17.1                     |      |      |  |  |
|                                                    | 9 Mbps OFDM              | 17.1                     |      |      |  |  |
|                                                    | 12 Mbps OFDM             | 17.1                     |      |      |  |  |
|                                                    | 18 Mbps OFDM             | 17.1                     |      |      |  |  |
|                                                    | 24 Mbps OFDM             | 16.2                     |      |      |  |  |
|                                                    | 36 Mbps OFDM             | 15.3                     |      |      |  |  |
|                                                    | 48 Mbps OFDM             | 14.6                     |      | dD   |  |  |
|                                                    | 54 Mbps OFDM             | 13.8                     |      | dBm  |  |  |
|                                                    | MCS0 MM                  | 16.1                     |      |      |  |  |
| Output Power: Maximum RMS output power measured    | MCS1 MM                  | 16.1                     |      |      |  |  |
| 1 dB from IEEE spectral mask or EVM <sup>(2)</sup> | MCS2 MM                  | 16.1                     |      |      |  |  |
|                                                    | MCS3 MM                  | 16.1                     |      |      |  |  |
|                                                    | MCS4 MM                  | 15.3                     |      |      |  |  |
|                                                    | MCS5 MM                  | 14.6                     |      |      |  |  |
|                                                    | MCS6 MM                  | 13.8                     |      |      |  |  |
|                                                    | MCS7 MM <sup>(3)</sup>   | 12.6                     |      |      |  |  |
|                                                    | MCS0 MM 40 MHz           | 14.8                     |      |      |  |  |
|                                                    | MCS7 MM 40 MHz           | 11.3                     |      |      |  |  |
|                                                    | R                        | RF_ANT1 + RF_ANT2 MIMO   |      |      |  |  |
|                                                    | MCS12 (BW2837)           | 18.5                     |      |      |  |  |
|                                                    | MCS13 (BW2837)           | 17.4                     |      | dD   |  |  |
|                                                    | MCS14 (BW2837)           | 14.5                     |      | dBm  |  |  |
|                                                    | MCS15 (BW2837)           | 13.4                     |      |      |  |  |
|                                                    | RF_ANT1 + RF_ANT2        |                          |      |      |  |  |
| Operation frequency range                          |                          | 2412                     | 2484 | MHz  |  |  |
| Return loss                                        |                          | -10.0                    |      | dB   |  |  |
| Reference input impedance                          |                          | 50.0                     |      | Ω    |  |  |

- (1) Maximum transmitter power (TP) degradation of up to 30% is expected, starting from 80°C ambient temperature on MIMO operation
- (2) Regulatory constraints limit module output power to the following:
  - · Channel 14 is used only in Japan; to keep the channel spectral shaping requirement, the power is limited: 14.5 dBm.
  - Channels 1, 11 @ OFDM legacy and HT 20-MHz rates: 12 dBm
  - Channels 1, 11 @ HT 40-MHz rates: 10 dBm
  - Channel 7 @ HT 40-MHz lower rates: 10 dBm
  - Channel 5 @ HT 40-MHz upper rates: 10 dBm
  - All 11B rates are limited to 16 dBm to comply with the ETSI PSD 10 dBm/MHz limit.
  - All OFDM rates are limited to 16.5 dBm to comply with the ETSI EIRP 20 dBm limit.
- (3) To ensure compliance with the EVM conditions specified in the PHY chapter of IEEE Std  $802.11^{TM} 2012$ :
  - MCS7 20 MHz channel 12 output power is 2 dB lower than the typical value.
  - MCS7 20 MHz channel 8 output power is 1 dB lower than the typical value.



Datasheet

#### 4.2.3 WLAN 5-GHz Receiver Characteristics

| PARAMETER                                    | CONDITION         | MIN    | TYP   | MAX    | UNIT |  |  |
|----------------------------------------------|-------------------|--------|-------|--------|------|--|--|
|                                              | RF_ANT1 or RF_AN  | T2     |       |        |      |  |  |
| Operation frequency range                    |                   | 4910.0 |       | 5825.0 | MHz  |  |  |
|                                              | 6 Mbps OFDM 1K    |        | -92.5 |        |      |  |  |
|                                              | 9 Mbps OFDM 1K    |        | -90.5 |        |      |  |  |
|                                              | 12 Mbps OFDM 1K   |        | -90.0 |        |      |  |  |
|                                              | 18 Mbps OFDM 1K   |        | -87.5 |        |      |  |  |
|                                              | 24 Mbps OFDM 1K   |        | -84.5 |        |      |  |  |
|                                              | 36 Mbps OFDM 1K   |        | -81.0 |        |      |  |  |
|                                              | 48 Mbps OFDM 1K   |        | -76.5 |        |      |  |  |
|                                              | 54 Mbps OFDM 1K   |        | -74.6 |        |      |  |  |
| Sensitivity: 20-MHz bandwidth. At < 10%      | MCS0 MM 4K        |        | -91.4 |        | dBm  |  |  |
| PER limit                                    | MCS1 MM 4K        |        | -88.0 |        | авт  |  |  |
|                                              | MCS2 MM 4K        |        | -86.0 |        |      |  |  |
|                                              | MCS3 MM 4K        |        | -83.0 |        |      |  |  |
|                                              | MCS4 MM 4K        |        | -79.8 |        |      |  |  |
|                                              | MCS5 MM 4K        |        | -75.5 |        |      |  |  |
|                                              | MCS6 MM 4K        |        | -74.0 |        |      |  |  |
|                                              | MCS7 MM 4K        |        | -72.4 |        |      |  |  |
|                                              | MCS0 MM 4K 40 MHz |        | -88.5 |        |      |  |  |
|                                              | MCS7 MM 4K 40 MHz |        | -69.3 |        |      |  |  |
| Maximum input level                          | OFDM              | -30.0  | -15.0 |        | dBm  |  |  |
| Adjacent channel rejection sensitivity +3 dB | OFDM54            | 2.0    |       |        | dBm  |  |  |
| RX LO leakage                                |                   |        | -52.0 |        | dBm  |  |  |
| PER floor                                    |                   |        | 1.0%  | 2.0%   |      |  |  |
| RSSI accuracy                                |                   |        | ±3    |        | dB   |  |  |

# 4.2.4 WLAN 5-GHz Transmitter Power (1)

| PARAMETER                                | CONDITION <sup>(2)</sup> | MIN  | TYP   | MAX  | UNIT  |
|------------------------------------------|--------------------------|------|-------|------|-------|
|                                          | RF_ANT1 or RF_A          | NT2  |       |      |       |
| Operation frequency range                |                          | 4920 |       | 5825 | MHz   |
|                                          | 6 Mbps OFDM              |      | 18.0  |      |       |
|                                          | 9 Mbps OFDM              |      | 18.0  |      |       |
|                                          | 12 Mbps OFDM             |      | 18.0  |      |       |
|                                          | 18 Mbps OFDM             |      | 18.0  |      |       |
|                                          | 24 Mbps OFDM             |      | 17.4  |      |       |
|                                          | 36 Mbps OFDM             |      | 16.5  |      |       |
|                                          | 48 Mbps OFDM             | 15.8 |       |      |       |
|                                          | 54 Mbps OFDM             |      | 14.5  |      |       |
| RMS output power complies with IEEE mask | MCS0 MM                  | 18.0 |       |      | dBm   |
| and EVM requirements                     | MCS1 MM 4K               |      | 18.0  |      | UDIII |
|                                          | MCS2 MM 4K               |      | 18.0  |      |       |
|                                          | MCS3 MM 4K               |      | 18.0  |      |       |
|                                          | MCS4 MM 4K               |      | 16.5  |      |       |
|                                          | MCS5 MM 4K               |      | 15.8  |      |       |
|                                          | MCS6 MM 4K               |      | 14.5  |      |       |
|                                          | MCS7 MM 4K               |      | 13.0  |      |       |
|                                          | MCS0 MM 40 MHz           |      | 16.5  |      |       |
|                                          | MCS7 MM 40 MHz           |      |       |      |       |
| Output power resolution                  |                          |      | 0.125 |      | dB    |



Datasheet

| PARAMETER                 | CONDITION <sup>(2)</sup> | MIN | TYP   | MAX | UNIT |
|---------------------------|--------------------------|-----|-------|-----|------|
| Return loss               |                          |     | -10.0 |     | dB   |
| Reference input impedance |                          |     | 50.0  | ·   | Ω    |

<sup>(1)</sup> All RF and performance numbers are aligned to the module pin.

## 4.2.5 WLAN Power Consumption (1)

| PARAMETER                  | SPECIFICATION                                       | TYP (AVG) -25°C | UNIT |
|----------------------------|-----------------------------------------------------|-----------------|------|
|                            | Low-power mode (LPM) 2.4-GHz RX SISO20 single chain | 49              |      |
|                            | 2.4 GHz RX search SISO20                            | 58              |      |
|                            | 2.4-GHz RX search MIMO20                            | 74              |      |
| 2.4                        | 2.4-GHz RX search SISO40                            | 63              |      |
|                            | 2.4-GHz RX 20 M SISO 11 CCK                         | 60              |      |
|                            | 2.4-GHz RX 20 M SISO 6 OFDM                         | 61              |      |
| Receiver                   | 2.4-GHz RX 20 M SISO MCS7                           | 69              | mA   |
| Receiver                   | 2.4-GHz RX 20 M MRC 1 DSSS                          | 74              | IIIA |
|                            | 2.4-GHz RX 20 M MRC 6 OFDM                          | 81              |      |
|                            | 2.4-GHz RX 20 M MRC 54 OFDM                         | 85              |      |
|                            | 2.4-GHz RX 40-MHz MCS7                              | 81              |      |
|                            | 5-GHz RX 20-MHz OFDM6                               | 68              |      |
|                            | 5-GHz RX 20-MHz MCS7                                | 77              |      |
|                            | 5-GHz RX 40-MHz MCS7                                | 85              |      |
|                            | 2.4-GHz TX 20 M SISO 6 OFDM                         | 285             |      |
|                            | 2.4-GHz TX 20 M SISO 11 CCK                         | 283             |      |
|                            | 2.4-GHz TX 20 M SISO 54 OFDM                        | 247             |      |
|                            | 2.4-GHz TX 20 M SISO MCS7                           | 238             |      |
| Transmitter(2)             | 2.4-GHz TX 20 M MIMO MCS15                          | 510             | mA   |
| Transmitter <sup>(2)</sup> | 2.4-GHz TX 40 M SISO MCS7                           | 243             | IIIA |
|                            | 5-GHz TX 20 M SISO 6 OFDM                           | 366             |      |
|                            | 5-GHz TX 20 M SISO 54 OFDM                          | 329             |      |
|                            | 5-GHz TX 20 M SISO MCS7                             | 324             |      |
|                            | 5-GHz TX 40 M SISO MCS7                             | 332             |      |

<sup>(1)</sup> All RF and performance numbers are aligned to the module pin.

<sup>(2)</sup> Maximum TP degradation of up to 30% is expected, starting from 80°C ambient temperature on 5-GHz TX operation.

<sup>(2)</sup> Numbers reflect the typical current consumption at maximum output power per rate.

## 4.3 Bluetooth Performance

All specifications are over operating free-air temperature range (unless otherwise noted)

# 4.3.1 BR, EDR Receiver Characteristics—In-Band Signals (1)

| PARAMETER                                                | CONDITION                       |          | MIN   | TYP   | MAX   | UNIT |  |
|----------------------------------------------------------|---------------------------------|----------|-------|-------|-------|------|--|
| Bluetooth BR, EDR operation frequency range              |                                 |          | 2402  |       | 2480  | MHz  |  |
| Bluetooth BR, EDR channel spacing                        |                                 |          |       | 1     |       | MHz  |  |
| Bluetooth BR, EDR input impedance                        |                                 |          |       | 50    |       | Ω    |  |
| Bluetooth BR, EDR                                        | BR, BER = 0.1%                  |          |       | -92.2 |       |      |  |
| sensitivity <sup>(2)</sup>                               | EDR2, BER = 0.01%               |          |       | -91.7 |       | dBm  |  |
| dirty TX on                                              | EDR3, BER = 0.01%               |          |       | -84.7 |       |      |  |
| Bluetooth EDR BER floor at                               | EDR2                            |          | 1e-6  |       |       |      |  |
| sensitivity + 10 dB<br>Dirty TX off (for 1,600,000 bits) | EDR3                            |          | 1e-6  |       |       |      |  |
| Bluetooth BR, EDR maximum                                | BR, BER = 0.1%                  |          | -5.0  |       |       |      |  |
| usable input power                                       | EDR2, BER = 0.1%                |          | -15.0 |       |       | dBm  |  |
| usable iliput powel                                      | EDR3, BER = 0.1%                |          | -15.0 |       |       |      |  |
| Bluetooth BR intermodulation                             | Level of interferers for n = 3, | 4, and 5 | -36.0 | -30.0 |       | dBm  |  |
|                                                          | BR, co-channel                  |          |       |       | 10    |      |  |
|                                                          | EDD                             | EDR2     |       |       | 12    |      |  |
|                                                          | EDR, co-channel                 | EDR3     |       |       | 20    |      |  |
|                                                          | BR, adjacent ±1 MHz             |          |       |       | -3.0  |      |  |
| Bluetooth BR, EDR C/I                                    | EDR, adjacent ±1 MHz,           | EDR2     |       |       | -3.0  |      |  |
| performance                                              | (image)                         | EDR3     |       |       | 2.0   |      |  |
| Numbers show wanted signal-                              | BR, adjacent +2 MHz             |          |       |       | -33.0 |      |  |
| to-interfering-signal ratio.                             | EDD adjacent (OM)               | EDR2     |       |       | -33.0 | dB   |  |
| Smaller numbers indicate                                 | EDR, adjacent +2 MHz            | EDR3     |       |       | -28.0 |      |  |
| better C/I performances (Image                           | BR, adjacent –2 MHz             |          |       |       | -20.0 |      |  |
| frequency = -1 MHz)                                      | EDB adjacent 2 MUz              | EDR2     |       |       | -20.0 |      |  |
|                                                          | EDR, adjacent –2 MHz            | EDR3     |       |       | -13.0 |      |  |
|                                                          | BR, adjacent ≥I±3I MHz          |          |       |       | -42.0 |      |  |
|                                                          | EDR, adjacent ≥I±3I MHz         | EDR2     |       |       | -42.0 |      |  |
|                                                          | EDIN, aujacent 21±31 MITZ       | EDR3     |       |       | -36.0 |      |  |
| Bluetooth BR, EDR RF return loss                         |                                 |          |       | -10.0 |       | dB   |  |

<sup>(1)</sup> All RF and performance numbers are aligned to the module pin.

<sup>(2)</sup> Sensitivity degradation up to  $-3~\mathrm{dB}$  may occur due to fast clock harmonics with dirty TX on.



Datasheet

## 4.3.2 Bluetooth Transmitter, BR (1)

| PARAMETER                         |                                       | MIN   | TYP   | MAX | UNIT |
|-----------------------------------|---------------------------------------|-------|-------|-----|------|
| DD DE autout a avea (2)           | V <sub>BAT</sub> ≥ 3 V <sup>(3)</sup> |       | 11.7  |     | dD.  |
| BR RF output power <sup>(2)</sup> | V <sub>BAT</sub> < 3 V <sup>(3)</sup> |       | 7.2   |     | dBm  |
| BR gain control range             |                                       |       | 30.0  |     | dB   |
| BR power control step             |                                       |       | 5.0   |     | dB   |
| BR adjacent channel power  M-N  = | 2                                     | -43.0 |       |     | dBm  |
| BR adjacent channel power  M-N  > | 2                                     |       | -48.0 |     | dBm  |

- (1) All RF and performance numbers are aligned to the module pin.
- (2) Values reflect maximum power. Reduced power is available using a vendor-specific (VS) command.
- (3) VBAT is measured with an on-chip ADC that has an accuracy error of up to 5%.

## 4.3.3 Bluetooth Transmitter, EDR (1)

| PARAMETER                       |                                       | MIN | TYP | MAX | UNIT  |
|---------------------------------|---------------------------------------|-----|-----|-----|-------|
| EDD output nowar(2)             | $V_{BAT} \ge 3 V^{(3)}$               |     | 7.2 |     | dD.m. |
| EDR output power <sup>(2)</sup> | V <sub>BAT</sub> < 3 V <sup>(3)</sup> |     | 5.2 |     | dBm   |
| EDR gain control range          |                                       |     | 30  |     | dB    |
| EDR power control step          |                                       |     | 5   |     | dB    |
| EDR adjacent channel power  M-N | = 1                                   |     | -36 |     | dBc   |
| EDR adjacent channel power  M-N | = 2                                   |     | -30 |     | dBm   |
| EDR adjacent channel power  M-N | > 2                                   |     | -42 |     | dBm   |

- (1) All RF and performance numbers are aligned to the module pin.
- (2) Values reflect default maximum power. Maximum power can be changed using a Vendor-Specific VS command.
- (3) VBAT is measured with an on-chip ADC that has an accuracy error of up to 5%.

## 4.3.4 Bluetooth Modulation, BR (1)

| CHARACTERISTICS                                       | CONDI                                                           | TION <sup>(2)</sup>                       | MIN | TYP | MAX | UNIT      |
|-------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------|-----|-----|-----|-----------|
| BR –20-dB bandwidth                                   |                                                                 |                                           |     | 925 | 995 | kHz       |
|                                                       | ∆f1avg                                                          | Mod data = 4 1s, 4<br>0s:<br>111100001111 | 145 | 160 | 170 | kHz       |
| BR modulation characteristics                         | $\Delta$ f2max ≥ limit for at least 99.9% of all $\Delta$ f2max | Mod data = 1010101                        | 120 | 130 |     | kHz       |
|                                                       | ∆f2avg, ∆f1avg                                                  |                                           | 85% | 88% |     |           |
| BR carrier frequency drift                            | One-slot packet                                                 |                                           | -25 |     | 25  | kHz       |
|                                                       | Three- and five-slot packet                                     |                                           | -35 |     | 35  | kHz       |
| BR drift rate                                         | Ifk+5 – fkl , k = 0 max                                         |                                           |     |     | 15  | kHz/50 μs |
| BR initial carrier frequency tolerance <sup>(3)</sup> | f0-fTX                                                          |                                           | ±75 | ·   | ±75 | kHz       |

- (1) All RF and performance numbers are aligned to the module pin.
- (2) Performance values reflect maximum power.
- (3) Numbers include XTAL frequency drift over temperature and aging.



Datasheet

## 4.3.5 Bluetooth Modulation, EDR (1)

| PARAMETER <sup>(2)</sup>                               | CONDITION | MIN        | TYP | MAX | UNIT |
|--------------------------------------------------------|-----------|------------|-----|-----|------|
| EDR carrier frequency stability                        |           | <b>-</b> 5 |     | 5   | kHz  |
| EDR initial carrier frequency tolerance <sup>(3)</sup> |           | ±75        |     | ±75 | kHz  |
|                                                        | EDR2      |            | 4%  | 15% |      |
| EDR RMS DEVM                                           | EDR3      |            | 4%  | 10% |      |
| EDD 000/ DEV44                                         | EDR2      |            |     | 30% |      |
| EDR 99% DEVM                                           | EDR3      |            |     | 20% |      |
| EDR peak DEVM                                          | EDR2      |            | 9%  | 25% |      |
|                                                        | EDR3      |            | 9%  | 18% |      |

- (1) All RF and performance numbers are aligned to the module pin.
- (2) Performance values reflect maximum power.
- (3) Numbers include XTAL frequency drift over temperature and aging.

## 4.3.6 Bluetooth BR / EDR Power Consumption

Current is measured at output power as follows: BR at 11.7 dBm; EDR at 7.2 dBm.

| USE CASE <sup>(1)(2)</sup>                                                    | TYP   | UNIT |  |  |  |  |
|-------------------------------------------------------------------------------|-------|------|--|--|--|--|
| BR voice HV3 + sniff                                                          | 11.6  | mA   |  |  |  |  |
| EDR voice 2-EV3 no retransmission + sniff                                     | 5.9   | mA   |  |  |  |  |
| Sniff 1 attempt 1.28 s                                                        | 178.0 | μΑ   |  |  |  |  |
| EDR A2DP EDR2 (master). SBC high quality – 345 kbps                           | 10.4  | mA   |  |  |  |  |
| EDR A2DP EDR2 (master). MP3 high quality – 192 kbps                           | 7.5   | mA   |  |  |  |  |
| Full throughput ACL RX: RX-2DH5 <sup>(3)(4)</sup>                             | 18.0  | mA   |  |  |  |  |
| Full throughput BR ACL TX: TX-DH5 <sup>(4)</sup>                              | 50.0  | mA   |  |  |  |  |
| Full throughput EDR ACL TX: TX-2DH5 <sup>(4)</sup>                            | 33.0  | mA   |  |  |  |  |
| Page scan or inquiry scan (scan interval is 1.28 s or 11.25 ms, respectively) | 253.0 | μΑ   |  |  |  |  |
| Page scan and inquiry scan (scan interval is 1.28 s and 2.56 s, respectively) | 332.0 | μA   |  |  |  |  |

- (1) The role of Bluetooth in all scenarios except A2DP is slave.
- (2) CL1P5 PA is connected to  $V_{BAT}$ , 3.7 V.
- (3) ACL RX has the same current in all modulations.
- (4) Full throughput assumes data transfer in one direction.

Datasheet

## 4.4 Bluetooth Low Energy Performance

## 4.4.1 Receiver Characteristics – In-Band Signals (1)

| PARAMETER                                                                         | CONDITION <sup>(2)</sup>    | MIN        | TYP   | MAX  | UNIT    |
|-----------------------------------------------------------------------------------|-----------------------------|------------|-------|------|---------|
| Bluetooth low energy operation frequency                                          |                             | 2402       |       | 2480 | MHz     |
| range                                                                             |                             | 2402       |       | 2400 | IVII IZ |
| Bluetooth low energy channel spacing                                              |                             |            | 2     |      | MHz     |
| Bluetooth low energy input impedance                                              |                             |            | 50    |      | Ω       |
| Bluetooth low energy sensitivity(3)                                               |                             |            | 00.0  |      | dD.     |
| Dirty TX on                                                                       |                             |            | -92.2 |      | dBm     |
| Bluetooth low energy maximum usable input                                         |                             | -          |       |      | -ID     |
| power                                                                             |                             | <b>–</b> 5 |       |      | dBm     |
| Bluetooth low energy intermodulation                                              | Level of interferers.       | -36        | -30   |      | dBm     |
| characteristics                                                                   | For n = 3, 4, 5             | -30        | -30   |      | иын     |
|                                                                                   | low energy, co-channel      |            |       | 12   |         |
| Bluetooth low energy C/I performance.                                             | low energy, adjacent ±1 MHz |            |       | 0    |         |
| Note: Numbers show wanted signal-to-<br>interfering-signal ratio. Smaller numbers | low energy, adjacent +2 MHz |            |       | -38  | 4D      |
|                                                                                   | low energy, adjacent -2 MHz |            |       | -15  | dB      |
| indicate better C/I performance.  Image = -1 MHz                                  | low energy, adjacent ≥      |            |       | 40   |         |
| IIIaye I IVII IZ                                                                  | ±3 MHz                      |            |       | -40  |         |

- (1) All RF and performance numbers are aligned to the module pin.
- (2) BER of 0.1% corresponds to PER of 30.8% for a minimum of 1500 transmitted packets, according to the Bluetooth low energy test specification.
- (3) Sensitivity degradation of up to -3 dB can occur due to fast clock harmonics.

## 4.4.2 Bluetooth low energy Transmitter Characteristics (1)

| PARAMETER                                             |                         | MIN TY      | P MAX | UNIT  |
|-------------------------------------------------------|-------------------------|-------------|-------|-------|
| Diverse the law or area of DE authority account(2)    | $V_{BAT} \ge 3 V^{(3)}$ | 7           | .0    | dD.ma |
| Bluetooth low energy RF output power <sup>(2)</sup>   | $V_{BAT} < 3 V^{(3)}$   | 7           | .0    | dBm   |
| Bluetooth low energy adjacent channel power  M-N  = 2 |                         | <b>–</b> 51 | .0    | dBm   |
| Bluetooth low energy adjacent channel power  M-N  > 2 |                         | -54         | .0    | dBm   |

- (1) All RF and performance numbers are aligned to the module pin.
- (2) Bluetooth low energy power is restricted to comply with the ETSI 10-dBm EIRP limit requirement.
- (3) VBAT is measured with an on-chip ADC that has an accuracy error of up to 5%.

## 4.4.3 Bluetooth low energy Modulation Characteristics (1)

| CHARACTERISTICS                                                         | CONDI                                           | TION <sup>(2)</sup>                                | MIN | TYP | MAX | UNIT      |
|-------------------------------------------------------------------------|-------------------------------------------------|----------------------------------------------------|-----|-----|-----|-----------|
| District                                                                | Δf1avg                                          | Mod data = four 1s<br>and four 0s:<br>111100001111 | 240 | 250 | 260 |           |
| Bluetooth low energy modulation characteristics                         | Δf2max ≥ limit for at least 99.9% of all Δf2max | Mod data = 1010101                                 | 195 | 215 |     | kHz       |
|                                                                         | Δf2avg, Δf1avg                                  |                                                    | 85% | 90% |     |           |
| Bluetooth low energy carrier frequency drift                            | lf0 – fnl, n = 2,3 K                            | lf0 – fnl, n = 2,3 K                               |     |     | 25  | kHz       |
| Bluetooth low energy drift rate                                         | If1 – f0l and lfn – fn-5l, n = 6,7 K            |                                                    |     |     | 15  | kHz/50 μs |
| Bluetooth low energy initial carrier frequency tolerance <sup>(3)</sup> | fn – fTX                                        | , ,                                                |     |     | +75 | kHz       |

- (1) All RF and performance numbers are aligned to the module pin.
- (2) Performance values reflect maximum power.
- (3) Numbers include XTAL frequency drift over temperature and aging.



Datasheet

#### 4.4.4 Bluetooth Low Energy Power Consumption

#### All current measured at output power of 6.5 dBm

| USE CASE <sup>(1)</sup>                                        | TYP | UNIT |
|----------------------------------------------------------------|-----|------|
| Advertising, not connectable <sup>(2)</sup>                    | 131 | μΑ   |
| Advertising, discoverable <sup>(2)</sup>                       | 143 | μΑ   |
| Scanning <sup>(3)</sup>                                        | 266 | μΑ   |
| Connected, master role, 1.28-s connect interval <sup>(4)</sup> | 124 | μA   |
| Connected, slave role, 1.28-s connect interval <sup>(4)</sup>  | 132 | μA   |

- (1) CL1p% PA is connected to V<sub>BAT</sub>, 3.7 V.
- (2) Advertising in all three channels, 1.28-s advertising interval, 15 bytes advertise data
- (3) Listening to a single frequency per window, 1.28-s scan interval, 11.25-ms scan window
- (4) Zero slave connection latency, empty TX and RX LL packets

Datasheet

# 5. Typical RF Parameters and Power Consumptions

**Table 5-1. WLAN Performance Parameters** 

| WLAN <sup>(1)</sup>                 | CONDITIONS                 | SPECIFICATION (TYP) | UNIT |
|-------------------------------------|----------------------------|---------------------|------|
| Maximum TX power, 5 GHz (OFDM6)     | 6-Mbps OFDM                | 18                  | dBm  |
| Maximum TX power, 2.4 GHz (1DSSS)   | 1-Mbps DSSS                | 16.5                | dBm  |
| Minimum sensitivity, 5 GHz (OFDM6)  | 6-Mbps OFDM                | -92.5               | dBm  |
| Minimum sensitivity, 2.4GHz (1DSSS) | 1-Mbps DSSS                | -95                 | dBm  |
| Sleep current                       | Leakage, firmware retained | 160                 | IJA  |
| Connected IDLE                      | No traffic IDLE connect    | 750                 | IJA  |
| RX search                           | 2.4-GHz SISO 20            | 58                  | mA   |
| RX current (SIS020)                 | MCS7, 2.4 GHz              | 69                  | mA   |
| RX current (SIS020)                 | MCS7, 5 GHz                | 77                  | mA   |
| TX current (SIS020)                 | MCS7, 2.4 GHz              | 238                 | mA   |
| TX current (SIS020)                 | MCS7, 5 GHz                | 324                 | mA   |

<sup>(1)</sup> System design power scheme must comply with both peak and average TX bursts.

#### **Table 5-2. Bluetooth Performance Parameters**

| BLUETOOTH           | CONDITIONS                                      | SPECIFICATION (TYP) | UNIT |
|---------------------|-------------------------------------------------|---------------------|------|
| Maximum TX power    | GFSK                                            | 11.7                | dBm  |
| Minimum sensitivity | Minimum sensitivity GFSK                        |                     | dBm  |
| Sniff               | 1 attempt, 1.28 s (+4 dBm)                      | 178                 | μΑ   |
| Page or inquiry     | 1.28-s interrupt, 11.25-ms scan window (+4 dBm) | 253                 | μΑ   |
| A2DP                | MP3 high quality 192 kbps (+4 dBm)              | 7.5                 | mA   |

#### Table 5-3. Shutdown and Sleep Currents

| PARAMETER                       | POWER SUPPLY CURRENT | TYP | UNIT |
|---------------------------------|----------------------|-----|------|
| Shutdown mode                   | VBAT                 | 10  |      |
| All functions shut down         | VIO                  | 2   | μΑ   |
| W/ AN electronic                | VBAT                 | 160 |      |
| WLAN sleep mode                 | VIO                  | 60  | μΑ   |
| Disease of the classes were de- | VBAT                 | 110 |      |
| Bluetooth sleep mode            | VIO                  | 60  | μΑ   |

Datasheet

## 6. Power Management

#### 6.1 Internal DC-DCs

The device incorporates three internal DC-DCs (switched-mode power supplies) to provide efficient internal supplies, derived from  $V_{\text{BAT}}$ .

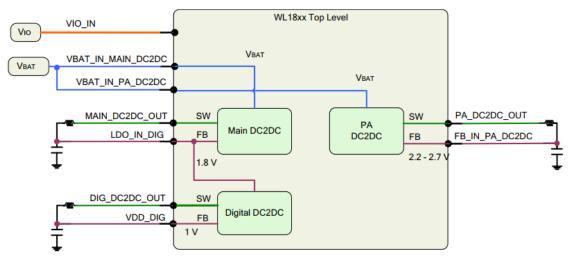
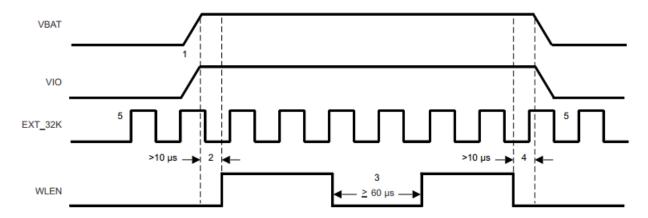



Figure 6-1. Internal DC-DCs

#### 6.2 Power-Up and Shut-Down States

The correct power-up and shut-down sequences must be followed to avoid damage to the device.

While VBAT or V10 or both are de-asserted, no signals should be driven to the device. The only exception is the slow clock that is a fail-safe 1/0.


While VBAT· V10, and slow clock are fed to the device, but WL\_EN is de-asserted (low), the device is in SHUTDOWN state. In SHUTDOWN state all functional blocks, internal DC-DCs, clocks, and LDOs are disabled.

To perform the correct power-up sequence, assert (high) WL\_EN. The internal DC-DCs, LDOs, and clock start to ramp and stabilize. Stable slow clock, V10, and VBAT are prerequisites to the assertion of one of the enable signals.

To perform the correct shut-down sequence, de-assert (low) WL\_EN while all the supplies to the device (VBAT· V10, and slow clock) are still stable and available. The supplies to the chip (VBAT and V10) can be deasserted only after both enable signals are de-asserted (low).

Datasheet

Below figure shows the general power scheme for the module, including the power-down sequence.



- NOTE: 1. Either VBAT or VIO can come up first.
  - 2. VBAT and VIO supplies and slow clock (SCLK), must be stable prior to EN being asserted and at all times when the EN is active.
  - 3. At least 60 IJS is required between two successive device enables. The device is assumed to be in shutdown state during that period, meaning all enables to the device are LOW for that minimum duration.
  - 4. EN must be de-asserted at least 10 IJS before VBAT or VIO supply can be lowered (order of supply turn
    - off after EN shutdown is immaterial).
  - 5. EXT\_32K- Fail safe I/O

Figure 6-2. Power-Up System

#### 6.3 Chip Top-level Power-Up Sequence

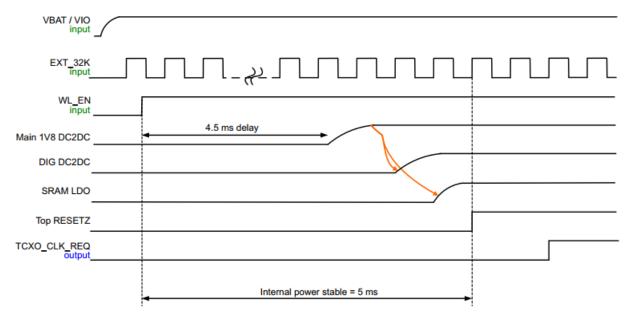



Figure 6-3. Chip Top-Level Power-Up Sequence



## 6.4 WLAN Power-Up Sequence

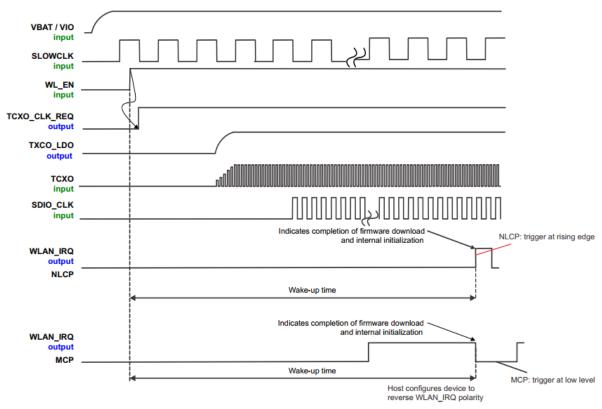



Figure 6-4. WLAN Power-Up Sequence

## 6.5 Bluetooth-Bluetooth Low Energy Power-Up Sequence

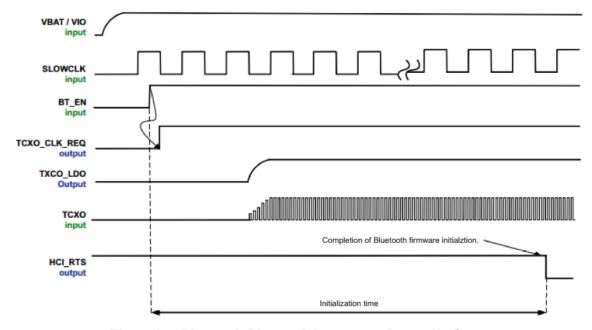



Figure 6-5. Bluetooth-Bluetooth low energy Power-Up Sequence



## 7. WLAN SDIO Transport Layer

The SDIO is the host interface for WLAN. The interface between the host and the module uses an SDIO interface and supports a maximum clock rate of 50 MHz.

The device SDIO also supports the following features of the SDIO V3 specification:

- 4-bit data bus
- · Synchronous and asynchronous in-band interrupt
- · Default and high-speed (HS, 50 MHz) timing
- Sleep and wake commands

#### 7.1 SDIO Default Rate Timing Specifications

SDIO switching characteristics over recommended operating conditions and with the default rate.

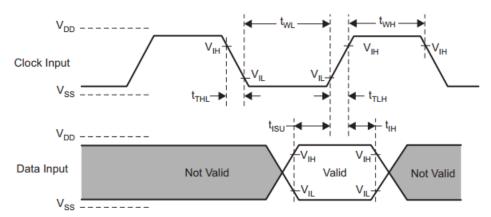



Figure 7-1. SDIO Default Input Timing

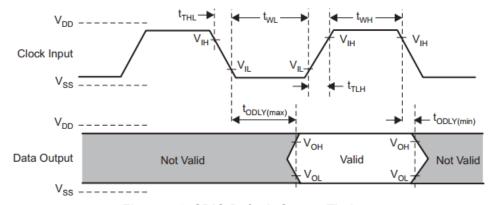



Figure 7-2. SDIO Default Output Timing

Datasheet

Table 7-1 lists the SDIO default timing characteristics.

Table 7-1. SDIO Default Rate Timing Characteristics(1)

|                    |                                                     | MIN   | MAX   | UNIT |
|--------------------|-----------------------------------------------------|-------|-------|------|
| f <sub>clock</sub> | Clock frequency, CLK(2)                             | 0.0   | 26.0  | MHz  |
| DC                 | Low, high duty cycle <sup>(2)</sup>                 | 40.0% | 60.0% |      |
| t <sub>TLH</sub>   | Rise time, CLK <sup>(2)</sup>                       |       | 10.0  | ns   |
| t <sub>THL</sub>   | Fall time, CLK <sup>(2)</sup>                       |       | 10.0  | ns   |
| t <sub>ISU</sub>   | Setup time, input valid before CLK ↑ <sup>(2)</sup> | 3.0   |       | ns   |
| t <sub>IH</sub>    | Hold time, input valid after CLK↑ <sup>(2)</sup>    | 2.0   |       | ns   |
| t <sub>ODLY</sub>  | Delay time, CLK↓ to output valid <sup>(2)</sup>     | 7.0   | 10.0  | ns   |
| C <sub>1</sub>     | Capacitive load on outputs <sup>(2)</sup>           |       | 15.0  | pF   |

<sup>(1)</sup> To change the data out clock edge from the falling edge (default) to the rising edge, set the configuration bit.

## 7.2 SDIO HS Switching Characteristics

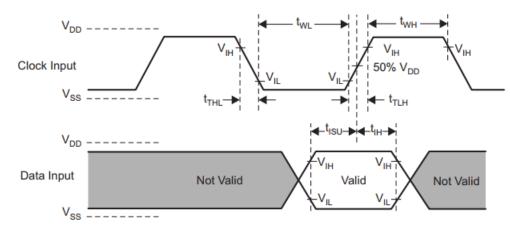



Figure 7-3. SDIO HS Input Timing

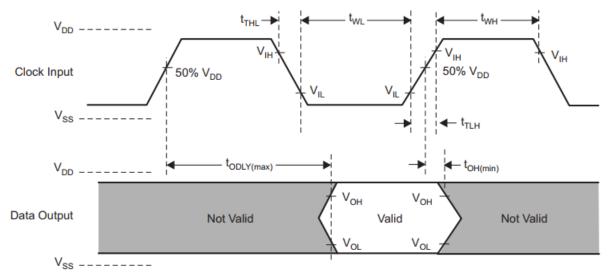



Figure 7-4. SDIO HS Output Timing

<sup>(2)</sup> Parameter values reflect maximum clock frequency.



Datasheet

Table 7-2 lists the SDIO high-rate timing characteristics.

## **Table 7-2. SDIO HS Timing Characteristics**

|                    |                                      | MIN   | MAX   | UNIT |
|--------------------|--------------------------------------|-------|-------|------|
| f <sub>clock</sub> | Clock frequency, CLK                 | 0.0   | 52.0  | MHz  |
| DC                 | Low, high duty cycle                 | 40.0% | 60.0% |      |
| t <sub>TLH</sub>   | Rise time, CLK                       |       | 3.0   | ns   |
| t <sub>THL</sub>   | Fall time, CLK                       |       | 3.0   | ns   |
| t <sub>ISU</sub>   | Setup time, input valid before CLK ↑ | 3.0   |       | ns   |
| t <sub>IH</sub>    | Hold time, input valid after CLK↑    | 2.0   |       | ns   |
| t <sub>ODLY</sub>  | Delay time, CLK↓ to output valid     | 7.0   | 10.0  | ns   |
| C <sub>1</sub>     | Capacitive load on outputs           |       | 10.0  | pF   |

Datasheet

# 8. HCI UART Shared-Transport Layers for All Functional Blocks (Except WLAN)

The device includes a UART module dedicated to the Bluetooth shared-transport, host controller interface (HCI) transport layer. The HCI transports commands, events, and ACL between the Bluetooth device and its host using HCI data packets ack as a shared transport for all functional blocks except WLAN. Below Table lists the transport mechanism for WLAN and Bluetooth audio.

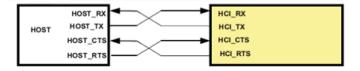
**Table 8-1. Transport Mechanism** 

| WLAN         | SHARED HCI FOR ALL FUNCTIONAL BLOCKS EXCEPT WLAN | BLUETOOTH VOICE-AUDIO |
|--------------|--------------------------------------------------|-----------------------|
| WLAN HS SDIO | Over UART                                        | Bluetooth PCM         |

The HCI UART supports most baud rates (including all PC rates) for all fast-clock frequencies up to a maximum of 4 Mbps. After power up, the baud rate is set for 115.2 Kbps, regardless of the fast-clock frequency. The baud rate can then be changed using a VS command. The device responds with a Command Complete Event (still at 115.2 Kbps), after which the baud rate change occurs.

HCI hardware includes the following features:

- · Receiver detection of break, idle, framing, FIFO overflow, and parity error conditions
- Receiver-transmitter underflow detection
- · CTS. RTS hardware flow control
- 4 wire (H4)


**Table 8-2. UART Default Setting** 

| PARAMETER   | VALUE      |
|-------------|------------|
| Bit rate    | 115.2 Kbps |
| Data length | 8 bits     |
| Stop-bit    | 1          |
| Parity      | None       |

#### UART 4-Wire Interface - H4

The interface includes four signals:

- TXD
- RXD
- CTS
- RTS



Flow control between the host and the device is byte-wise by hardware.

When the UART RX buffer of the device passes the flow-control threshold, the buffer sets the UART\_RTS signal high to stop transmission from the host. When the UART\_CTS signal is set high, the device stops transmitting on the interface. If HCI\_CTS is set high in the middle of transmitting a byte, the device finishes transmitting the byte and stops the transmission.

Datasheet

Figure 8-1 shows the UART timing.

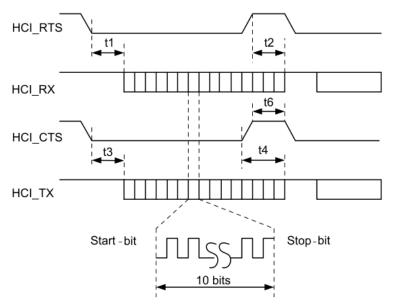



Figure 8-1. UART Timing Diagram

Table 8-3. UART Timing Characteristics

|    | PARAMETER                   | CONDITION                 | MIN    | TYP | MAX   | UNIT  |
|----|-----------------------------|---------------------------|--------|-----|-------|-------|
|    | Baud rate                   |                           | 37.5   |     | 4364  | Kbps  |
|    | Baud rate accuracy per byte | Receive-transmit          | -2.5%  |     | 1.5%  |       |
|    | Baud rate accuracy per bit  | Receive-transmit          | -12.5% |     | 12.5% |       |
| t3 | CTS low to TX_DATA on       |                           | 0.0    | 2.0 |       | μs    |
| t4 | CTS high to TX_DATA off     | Hardware flow control     |        |     | 1.0   | Byte  |
| t6 | CTS high pulse width        |                           | 1.0    |     |       | Bit   |
| t1 | RTS low to RX_DATA on       |                           | 0.0    | 2.0 |       | μs    |
| t2 | RTS high to RX_DATA off     | Interrupt set to 1/4 FIFO |        |     | 16.0  | Bytes |

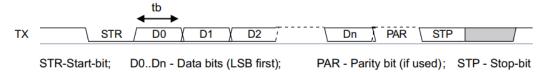



Figure 8-2. UART Data Frame

Datasheet

## 9. Bluetooth Codec-PCM (Audio) Timing Specifications

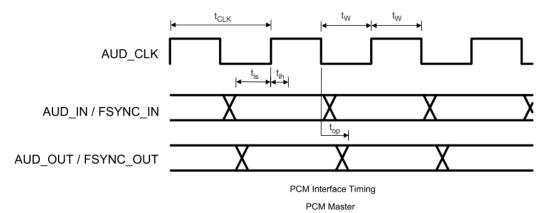



Figure 9-1. Bluetooth Codec-PCM (Audio) Master Timing Diagram

Table 9-1. Bluetooth Codec-PCM Master Timing Characteristics

| PARAMETER        |                               | MIN                         | MAX            | UNIT |
|------------------|-------------------------------|-----------------------------|----------------|------|
| T <sub>clk</sub> | Cycle time                    | 162.76 (6.144 MHz)          | 15625 (64 kHz) | ns   |
| T <sub>w</sub>   | High or low pulse width       | 35% of T <sub>clk</sub> min |                |      |
| t <sub>is</sub>  | AUD_IN setup time             | 10.6                        |                |      |
| t <sub>ih</sub>  | AUD_IN hold time              | 0                           |                |      |
| t <sub>op</sub>  | AUD_OUT propagation time      | 0                           | 15             |      |
| t <sub>op</sub>  | FSYNC_OUT propagation time    | 0                           | 15             |      |
| Cı               | Capacitive loading on outputs |                             | 40             | pF   |

Table 9-2. Bluetooth Codec-PCM Slave Timing Characteristics

| PARAMETE         | R                             | MIN                         | MAX | UNIT |
|------------------|-------------------------------|-----------------------------|-----|------|
| T <sub>clk</sub> | Cycle time                    | 81.38 (12.288 MHz)          |     | ns   |
| T <sub>w</sub>   | High or low pulse width       | 35% of T <sub>clk</sub> min |     |      |
| t <sub>is</sub>  | AUD_IN setup time             | 5                           |     |      |
| t <sub>ih</sub>  | AUD_IN hold time              | 0                           |     |      |
| t <sub>is</sub>  | AUD_FSYNC setup time          | 5                           |     |      |
| t <sub>ih</sub>  | AUD_FSYNC hold time           | 0                           |     |      |
| t <sub>op</sub>  | AUD_OUT propagation time      | 0                           | 19  |      |
| Cı               | Capacitive loading on outputs |                             | 40  | pF   |



#### **Reference Design** 10.

## 10.1 Block Diagram

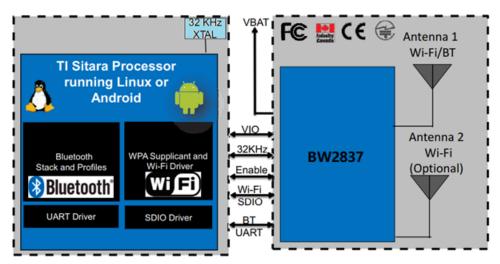



Figure 10-1. BDE-BW2837 High-Level System Diagram

Datasheet

## 10.2 Typical Application Schematic

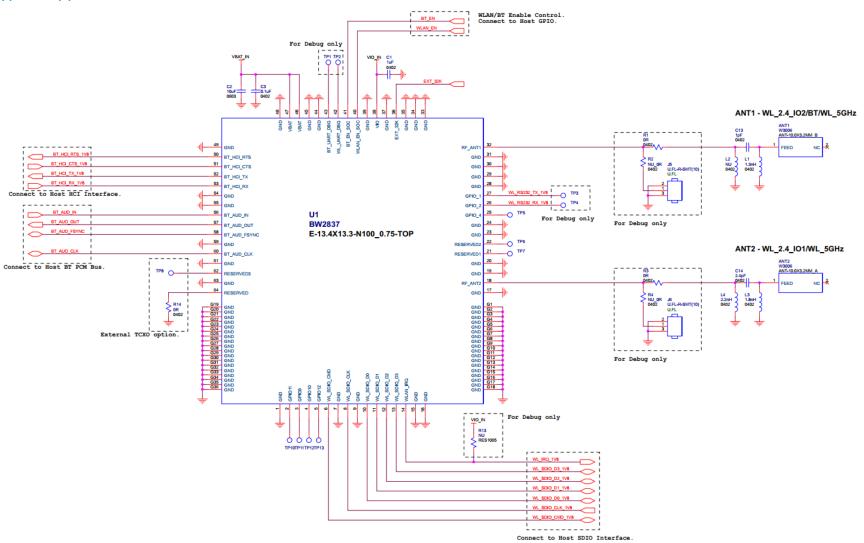



Figure 10-2. BDE-BW2837 Typical Application Schematic

Datasheet

#### Table 10-1. Bill of Materials

| ITEM | DESCRIPTION                                    | PART NO.           | PACKAGE                | REFERENCE  | QTY | MFR    |
|------|------------------------------------------------|--------------------|------------------------|------------|-----|--------|
| 1    | BDE-BW2837 Wi-Fi / Bluetooth module            | BDE-BW2837         | 13.4 × 13.3 ×2.0<br>mm | U1         | 1   | BDE    |
| 2    | XOSC 3225 / 32.768 kHz / 1.8 V /<br>±50 ppm    | 7XZ3200005         | 3.2 × 2.5 × 1.0 mm     | OSC1       | 1   | TXC    |
| 3    | ANT / Chip / 2.4 GHz and 5 GHz                 | W3006              | 10.0 × 3.2 ×1.5<br>mm  | ANT1, ANT2 | 2   | Pulse  |
| 4    | Mini-RF header receptacle                      | UFL-R-SMT-1 (10)   | 3.0 × 2.6 × 1.25<br>mm | J5, J6     | 2   | Hirose |
| 5    | Inductor 0402 / 1.3 nH / ±0.1 nH / SMD         | LQP15MN1N3B02      | 0402                   | L1         | 1   | Murata |
| 6    | Inductor 0402 / 1.8 nH / ±0.1 nH / SMD         | LQP15MN1N8B02      | 0402                   | L3         | 1   | Murata |
| 7    | Inductor 0402 / 2.2 nH / ±0.1 nH / SMD         | LQP15MN2N2B02      | 0402                   | L4         | 1   | Murata |
| 8    | Capacitor 0402 / 1 pF/ 50 V / C0G / ±0.1 pF    | GJM1555C1H1R0BB01  | 0402                   | C13        | 1   | Murata |
| 9    | Capacitor 0402 / 2.4 pF / 50 V / C0G / ±0.1 pF | GJM1555C1H2R4BB01  | 0402                   | C14        | 1   | Murata |
| 10   | Capacitor 0402 / 0.1 μF / 10 V / X7R / ±10%    | 0402B104K100CT     | 0402                   | C3         | 1   | Walsin |
| 11   | Capacitor 0402 / 1 µF / 6.3 V / X5R / ±10%/HF  | GRM155R60J105KE19D | 0402                   | C1         | 1   | Murata |
| 12   | Capacitor 0603 / 10 μF / 6.3 V / X5R / ±20%    | C1608X5R0J106M     | 0603                   | C2         | 1   | TDK    |
| 13   | Resistor 0402 / 0R / ±5%                       | WR04X000 PTL       | 0402                   | R1, R3     | 2   | Walsin |

## 10.3 Design Recommendations

Table 10-2. Layout Recommendations Summary

| ITEM    | DESCRIPTION                                                                                                                     |  |  |  |  |  |  |
|---------|---------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Therma  | Thermal                                                                                                                         |  |  |  |  |  |  |
| 1       | The proximity of ground vias must be close to the pad.                                                                          |  |  |  |  |  |  |
| 2       | Signal traces must not be run underneath the module on the layer where the module is mounted.                                   |  |  |  |  |  |  |
| 3       | Have a complete ground pour in layer 2 for thermal dissipation.                                                                 |  |  |  |  |  |  |
| 4       | Have a solid ground plane and ground vias under the module for stable system and thermal dissipation.                           |  |  |  |  |  |  |
| 5       | Increase the ground pour in the first layer and have all of the traces from the first layer on the inner layers, if possible.   |  |  |  |  |  |  |
| 6       | Signal traces can be run on a third layer under the solid ground layer, which is below the module mounting layer.               |  |  |  |  |  |  |
| RF Trac | e and Antenna Routing                                                                                                           |  |  |  |  |  |  |
| 7       | The RF trace antenna feed must be as short as possible beyond the ground reference. At this point, the trace starts to radiate. |  |  |  |  |  |  |
| 8       | The RF trace bends must be gradual with an approximate maximum bend of 45° with trace mitered. RF traces must not have sharp    |  |  |  |  |  |  |
| 0       | corners.                                                                                                                        |  |  |  |  |  |  |
| 9       | RF traces must have via stitching on the ground plane beside the RF trace on both sides.                                        |  |  |  |  |  |  |
| 10      | RF traces must have constant impedance (microstrip transmission line).                                                          |  |  |  |  |  |  |
| 11      | For best results, the RF trace ground layer must be the ground layer immediately below the RF trace. The ground layer must be   |  |  |  |  |  |  |
|         | solid.                                                                                                                          |  |  |  |  |  |  |
| 12      | There must be no traces or ground under the antenna section.                                                                    |  |  |  |  |  |  |
| 13      | RF traces must be as short as possible. The antenna, RF traces, and modules must be on the edge of the PCB product. The         |  |  |  |  |  |  |
| 13      | proximity of the antenna to the enclosure and the enclosure material must also be considered.                                   |  |  |  |  |  |  |



**Datasheet** 

| ITEM   | DESCRIPTION                                                                                                                        |  |  |  |  |  |  |
|--------|------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Supply | Supply and Interface                                                                                                               |  |  |  |  |  |  |
| 14     | The power trace for VBAT must be at least 40-mil wide.                                                                             |  |  |  |  |  |  |
| 15     | The 1.8-V trace must be at least 18-mil wide.                                                                                      |  |  |  |  |  |  |
| 16     | Make VBAT traces as wide as possible to ensure reduced inductance and trace resistance.                                            |  |  |  |  |  |  |
| 17     | If possible, shield VBAT traces with ground above, below, and beside the traces.                                                   |  |  |  |  |  |  |
|        | SDIO signals traces (CLK, CMD, D0, 01, 02, and 03) must be routed in parallel to each other and as short as possible (less than    |  |  |  |  |  |  |
| 18     | 12 em). In addition, every trace length must be the same as the others. There should be enough space between traces-greater        |  |  |  |  |  |  |
| 10     | than 1.5 times the trace width or ground-to ensure signal quality, especially for the SDIO_CLK trace. Remember to keep these       |  |  |  |  |  |  |
|        | traces away from the other digital or analog signal traces. TI recommends adding ground shielding around these buses.              |  |  |  |  |  |  |
| 19     | SDIO and digital clock signals are a source of noise. Keep the traces of these signals as short as possible. If possible, maintain |  |  |  |  |  |  |
| 19     | a clearance around them.                                                                                                           |  |  |  |  |  |  |

Figure 10-3 shows the MIMO antenna spacing. The distance between ANT1 and ANT2 must be greater than half the wavelength (62.5 mm at 2.4 GHz).

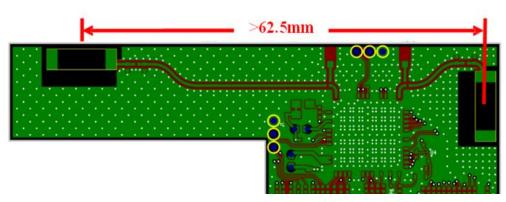



Figure 10-3. MIMO Antenna Spacing

## 11. Baking and SMT Recommendations

## 11.1 Baking Recommendations

- Follow MSL level 3 to perform the baking process.
- After the bag is open, devices subjected to reflow solder or other high temperature processes must be mounted within 72 hours of factory conditions (< 30°C/60% RH) or stored at <10% RH.
- If the Humidity Indicator Card reads >10%, devices require baking before they are mounted.
- If baking is required, bake devices for 8 hours at 125°C.

#### 11.2 SMT Recommendations

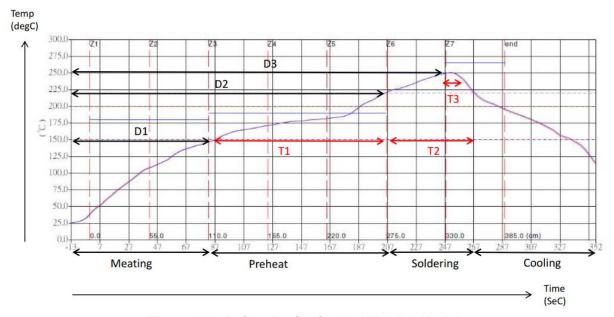
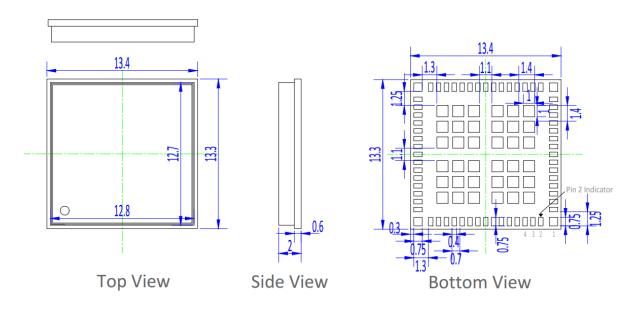



Figure 11-1. Reflow Profile for the WiLink 8 Module

**Table 11-1. Temperature Values for Reflow Profile** 

| Item         | Temperature (°C)                   | Time (sec)                  |
|--------------|------------------------------------|-----------------------------|
| Pre - heat   | D1 to approximately D2: 140 to 200 | T1: 80 to approximately 120 |
| Soldering    | D2: 220                            | T2: 60 ± 10                 |
| Peak - Temp. | D3: 250 maximum                    | T3: 10                      |




## 12. Mechanical Specifications

#### 12.1 Dimensions

The module dimensions are presented in the following figure:

Note: All dimensions are in mm.



All dimensions are in mm
Coplanarity applies to the exposed pads as well as the terminals
Coplanarity shall not exceed 0.1 mm
Warpage shall not exceed 0.1 mm

Figure 12-1. Mechanical Drawing

## 12.2 PCB Footprint

The footprint for the PCB is presented in the following figure: Note: All dimensions are in mm.

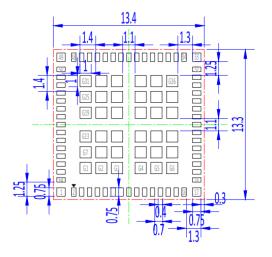



Figure 12-2. Module Footprint Top View

12.3 Marking

Dual-Band Industrial Module –Wi-Fi, BT, and BLE



Figure 12-3. Indicative Module Shield Marking



# 13. Packaging Information

#### Tape and Reel Information

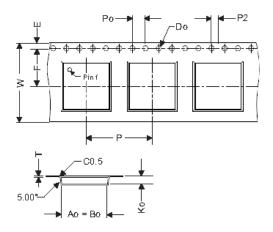



Figure 13-1. Tape Specification

**Table 13-1. Dimensions for Tape Specification** 

| ITEM      | W       | Е       | F       | р       | Po      | P2      | Do      | Т       | Ao      | Во      | Ko      |
|-----------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| DIMENSION | 24.00   | 1.75    | 11.50   | 20.00   | 4.00    | 2.00    | 2.00    | 0.35    | 13.80   | 13.80   | 2.50    |
| (mm)      | (±0.30) | (±0.10) | (±0.10) | (±0.10) | (±0.10) | (±0.10) | (±0.10) | (±0.05) | (±0.10) | (±0.10) | (±0.10) |

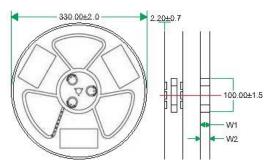



Figure 13-2. Reel Specification

**Table 13-2. Dimensions for Reel Specification** 

| ITEM           | W1               | W2            |
|----------------|------------------|---------------|
| DIMENSION (mm) | 244 (+1.5, -0.5) | 304 (maximum) |



Datasheet

## 14. Ordering Information

|   | Part Number | Size (mm)       | Core Chip | Package     | MOQ  |
|---|-------------|-----------------|-----------|-------------|------|
| Ī | BDE-BW2837  | 13.3 × 13.4 × 2 | WL1837    | Tape & Reel | 1000 |

## 15. Revision History

| Revision | Date        | Description             |
|----------|-------------|-------------------------|
| V0.9     | 7-Sept-2020 | Initial Draft           |
| V1.0     | 5-Oct-2020  | Editorial Correction    |
| V2.0     | 12-Apr-2021 | Replacement of template |

#### Contacts

BDE Technology Inc.

China: B2-403, 162 Science Avenue, Huangpu District, Guangzhou 510663, China

Tel: +86-20-28065335

Website: http://www.bdecomm.com Email: shu@bdecomm.comm

USA: 67 E Madison St, #1603A, Chicago, IL 60603, US

Tel: +1-312-379-9589

Website: http://www.bdecomm.com Email: info@bdecomm.com