

V1.0

Contents

1.	Genera	i Desc	ription	3
2.	Launch	pad Ev	valuation Module: BDE-LPEM	3
3.		•	rd: BDE-MB13-BO	
	3.1.	Brea	akout Board Header Pin Assignment	5
	3.2.		oug Header Pin Assignment	
4.	Getting	Starte	ed	7
	4.1.	Prei	requisites	8
	4.3	1.1.	Hardware	8
	4.3	1.2.	Software and Tools	8
	4.2.	Har	dware Setup	8
	4.3.	Soft	ware Setup	9
	4.3	3.1.	Download and Install CCS	9
	4.3	3.2.	Download and Install SDK	13
	4.4.	BLE.	5-STACK	16
	4.4	4.1.	Import Project into CCS	17
	4.4	4.2.	Modify XOSC Cap Setting	18
	4.4	4.3.	Build and Download Project	19
	4.4	4.4.	Running the Demo	20
	4.5.	Hos	t_test Project & Btool Software	23
	4.6.	TI15	54STACK	26
	4.0	6.1.	Import Projects into CCS	26
	4.0	6.2.	Modify XOSC Cap Setting	28
	4.0	6.3.	Build and Download Project	29
	4.0	6.4.	Running the demo	31
	4.7.	Use	UniFlash to Download Firmware	34
	4.	7.1.	Configure UniFlash	34
	4.7	7.2.	Programming	35
	4.8.	Sma	artRF™ Studio	35
	4.8	8.1.	Connect to the Module	36
	4.8	8.2.	Change the Default Settings	37
	4.8	8.3.	Perform RF Test	37
5.	Other R	Resour	ces	39
6.	Orderin	ng Info	rmation	39
7.	Revisio	n Histo	ory	40
8.	Additio	nal Inf	formation	41
	a) Tra	adema	rks	41
lmp	ortant N	lotice	and Disclaimer	42
Con	tact			42

1. General Description

This user guide is intended to assist the users in evaluating the module by providing instructions on how to effectively use the evaluation kit.

The BDE-MP2674R10xx is a multi-band Sub-1GHz and 2.4GHz wireless module supporting Thread, Zigbee®, Bluetooth® 5.2 low Energy, IEEE 802.15.4g, IPv6-enabled smart objects (6LoWPAN), mioty, Wi-SUN, Amazon Sidewalk, proprietary systems including TI 15.4-Stack (Sub-1GHz and 2.4GHz), and concurrent multiprotocol through a Dynamic Multiprotocol Manager (DMM) driver.

The kit includes a breakout board with module (board number: BDE-MB13-BO), a LaunchpadTM evaluation module which can connect with the breakout board through the BoosterPackTM interface (board number: BDE-LPEM), and also a XDS110 debugger used for debugging BDE-MP2674R10xx device (board number: BDE-XDS110).

2. Launchpad Evaluation Module: BDE-LPEM

The BDE-LPEM is an evaluation module designed as an interface module with BoosterPack interface which can connect with any boards that come with the standard BoosterPack interface, including the BDE-MB13-BO board. For more details on the BoosterPack pinout standard, please refer to this <u>link</u>.

The board overview is shown as Figure 1.

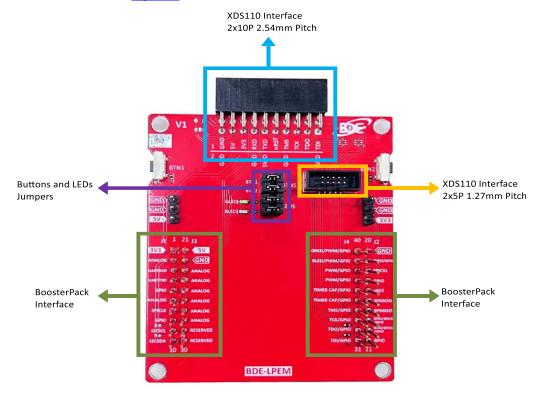


Figure 1. Board Overview of BDE-LPEM

3. Breakout Board: BDE-MB13-BO

We provide a breakout board for module to enable easy access to every exposed pad on module with the 2.54mm-pitch pins. The breakout board can be stacked to the BDE-LPEM board for evaluation.

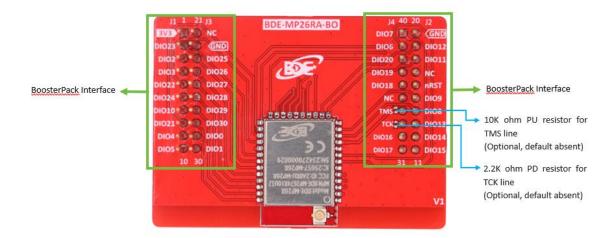


Figure 2. Board Overview of BDE-MP26RA-BO

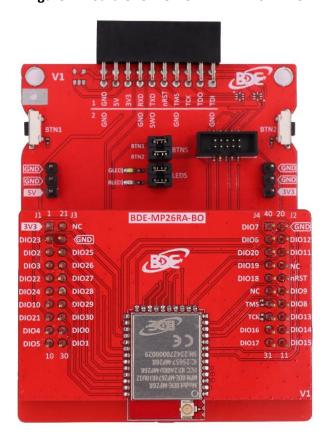


Figure 3. The Photo of BDE-LPEM Stacked with the Breakout Board with Module

3.1. Breakout Board Header Pin Assignment

<u>Table 1</u> shows the pin assignment for breakout board header J1, J2, J3 and J4.

Table 1. Breakout Board Headers Pin Assignment

Pin Number	Pin Name	Type/Direction	Description	
_	0.40		Board power supply, connect with module VDD through a ferrite	
1	3V3	Power	bead	
2	NC	-	No connect	
3	DIO12	1/0	GPIO, module RX in BoosterPack pin	
4	DIO20	1/0	GPIO, module TX in BoosterPack pin	
5	DIO4	1/0	GPIO	
6	NC	-	No connect	
7	SCLK	1/0	SPI_CLK in BoosterPack pin, GPIO24 can be assigned to it by jumper "DIO24_SEL"	
8	DIO3	1/0	GPIO	
9	SCL	1/0	I2C_SCL in BoosterPack pin, GPIO6 can be assigned to it by jumper "DIO6_SEL"	
10	SDA	1/0	I2C_SDA in BoosterPack pin, GPIO8 can be assigned to it by jumper "DIO8_SEL"	
11	NC	-	No connect	
12	BTN2	1/0	Button 2 in BoosterPack pin, GPIO6 can be assigned to it by jumper "DIO6_SEL"	
13	BTN1	1/0	Button 1 in BoosterPack pin, GPIO24 can be assigned to it by jumper "DIO24_SEL"	
14	MISO	1/0	SPI_MISO in BoosterPack pin, GPIO21 can be assigned to it by jumper "DIO21_SEL"	
15	DIO13	1/0	GPIO	
16	nRST	Input	Reset pin, active low	
17	NC	-	No connect	
18	SPICS	1/0	SPI_CS in BoosterPack pin, GPIO11 can be assigned to it by jumper "DIO11_SEL"	
19	NC	-	No connect	
20	GND	GND	Board ground	
21	NC	-	No connect	
22	GND	GND	Board ground	
23	NC	-	No connect	
24	NC	-	No connect	
25	NC	-	No connect	
26	NC	-	No connect	
27	NC	-	No connect	
28	NC	-	No connect	

Pin Number	Pin Name	Type/Direction	Description	
29	NC	-	No connect	
30	NC	-	No connect	
31	NC	-	No connect	
32	NC	-	No connect	
33	SWDIO	1/0	SWDIO for SWD debug or DIO16	
34	SWDCK	I/O	SWDCK for SWD debug or DIO17	
35	NC	-	No connect	
36	NC	-	No connect	
37	NC	-	No connect	
20	PWM	1/0	PWM/GPIO in BoosterPack pin, GPIO11 can be assigned to it by	
38			jumper "DIO11_SEL"	
39	RLED	1/0	RED LED in BoosterPack pin, GPIO21 can be assigned to it by jumper	
39	KLED		"DIO21_SEL"	
40	GLED	1/0	Green LED in BoosterPack pin, GPIO8 can be assigned to it by jumper	
40	GLED		"DIO8_SEL"	

3.2. Debug Header Pin Assignment

Figure 4. Debug Header

<u>Table 2</u> shows the pin assignment for the debug header.

Table 2. Debug Header Pin Assignment

Pin Number	Pin Name	Type/Direction	Description
1, 2, 8, 14, 20	GND	GND	Board ground
3	5V	Power	5V supply from XDS110
4, 6, 12, 16, 18	NC	-	No connect
5	3V3	Power	Module power supply
7	RXD	Input	Module UART RXD
9	TXD	Output	Module UART TXD
10	SWO	1/0	SWO for JTAG
11	nRST	Input	Reset pin, active low
13	TMS	1/0	TMS for JTAG/XDS110, or SWDIO for SWD debug
15	TCK	I/O	TCK for JTAG/XDS110, or SWDCK for SWD debug
17	TDO	1/0	TDO for JTAG/XDS110

Pin Number	Pin Name	Type/Direction	Description
19	TDI	1/0	TDI for JTAG/XDS110

BDE recommends using XDS110 for the debug. J-Link or other debuggers support SWD could also work.

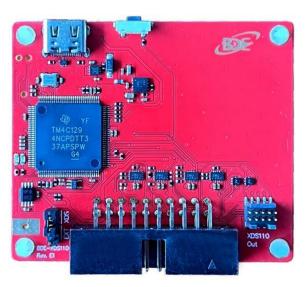
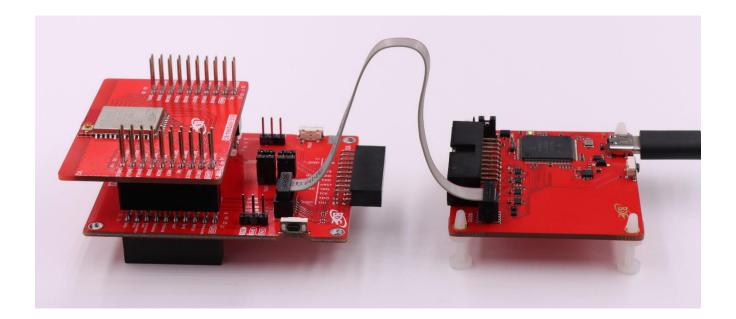



Figure 5. BDE-XDS110

The board can also be connected via a 2x5P 1.27-pitch ribbon cable to the XDS110 debugger.

4. Getting Started

Below section describes how to set up the development environment of BDE-MP2674R10xx module, including the hardware and software.

4.1. Prerequisites

4.1.1. Hardware

- BDE-MB13-BO, breakout board with module BDE-MP2674R10xx, depending on what module variant you are choosing;
- BDE-LPEM, Launchpad evaluation interface module;
- BDE-XDS110, XDS110 debugger;
- USB type C cable;
- PC

4.1.2. Software and Tools

- Code Composer Studio
- <u>SIMPLELINK-LOWPOWER-F2-SDK</u>
- SimpleLink Connect mobile app
- UniFlash
- SmartRF Studio
- <u>PuTTY</u>

4.2. Hardware Setup

- 1. Plug BDE-MB13-BO into the BDE-LPEM evaluation module and connect BDE-LPEM to BDE-XDS110, as shown in Figure 6;
- 2. Connect the jumpers as shown in Figure 6;
- 3. Connect the BDE-XDS110 to the PC via a USB type C cable. The XDS110 will power the module with 3.3V if the jumper on BDE-XDS110 is plugged to XDS.

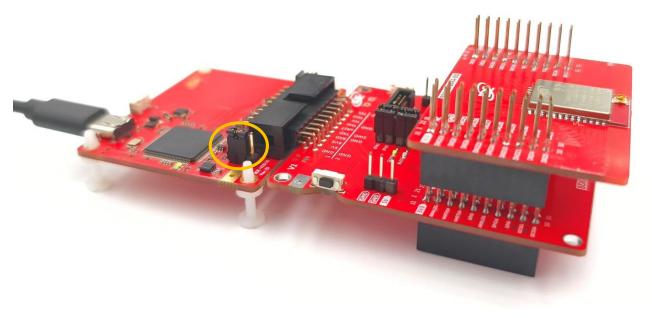
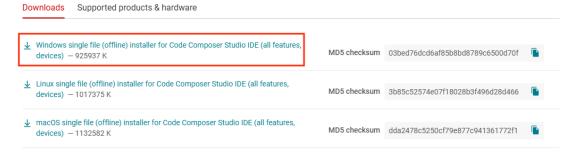


Figure 6. Hardware Setup

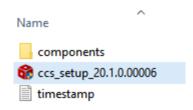

4.3. Software Setup

4.3.1. Download and Install CCS

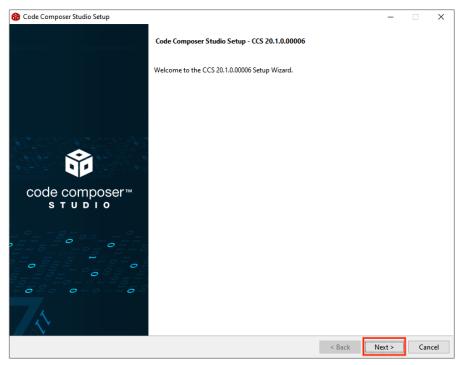

1. Visit the following link.

https://www.ti.com/tool/CCSTUDIO

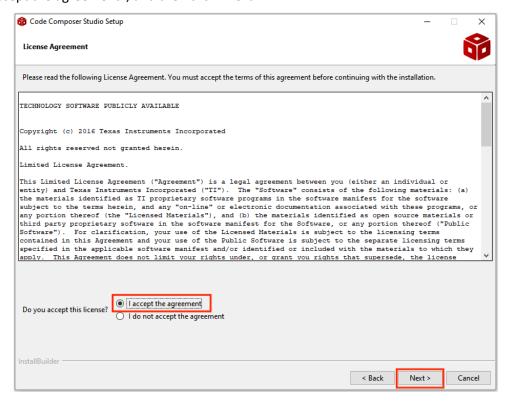
2. Find CCSTUDIO item, and click "Download options".



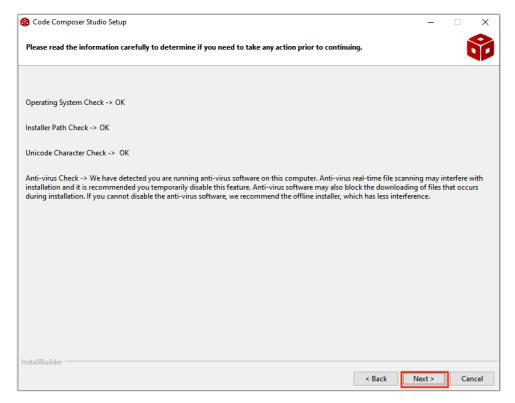
3. Choose the target platform, in this case, Windows is selected.



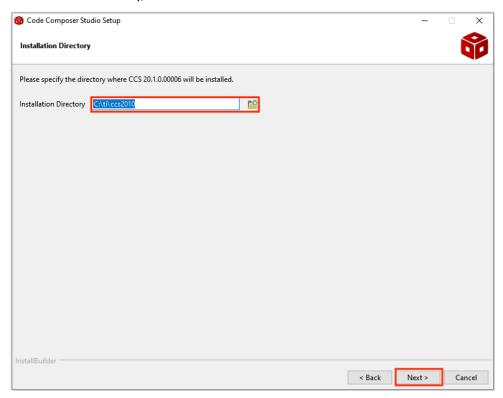
4. Decompress the zip file, and double-click "ccs_setup_xx.exe".



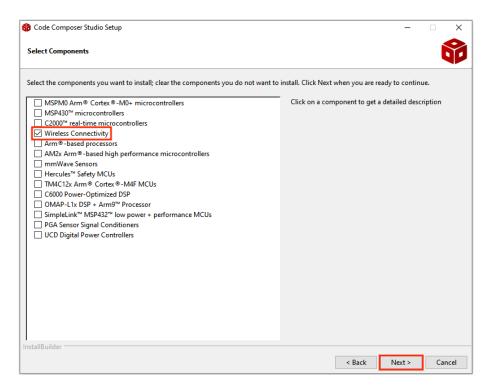
5. Click "Next".



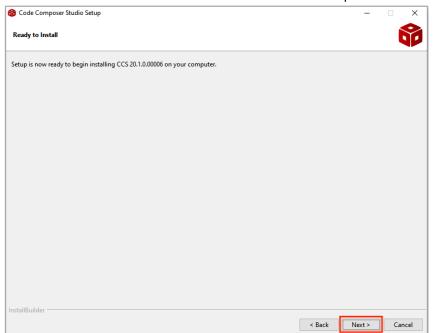
6. Select "I accept the agreement", and then click "Next".



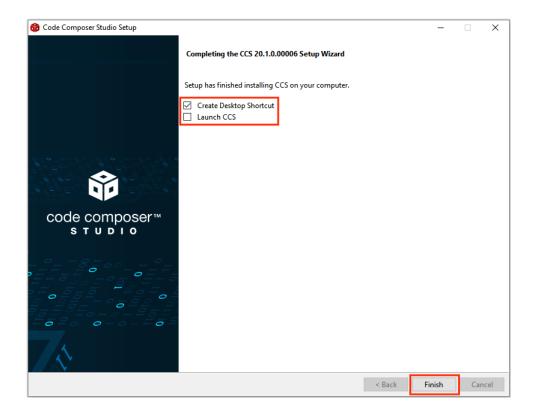
7. Click "Next".



8. Choose the installation directory, and then click "Next".



9. Select "Wireless connectivity" components, and then click "Next".



10. Click "Next", and the installation will start. Wait until the installation is complete.

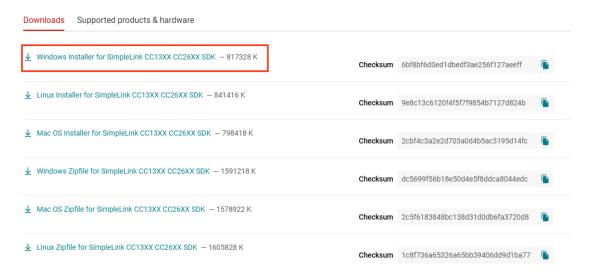
11. Click "Finish".

4.3.2. Download and Install SDK

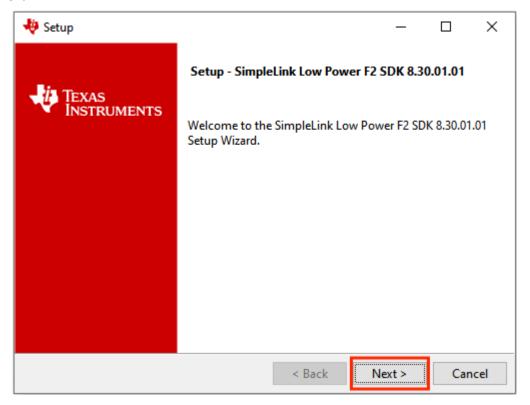
- Visit the following link.
 - $\underline{https://www.ti.com/tool/download/SIMPLELINK-LOWPOWER-F2-SDK}$
- 2. Find "SIMPLELINK-LOWPOWER-F2-SDK" item, and click "Download options".

SOFTWARE DEVELOPMENT KIT (SDK)

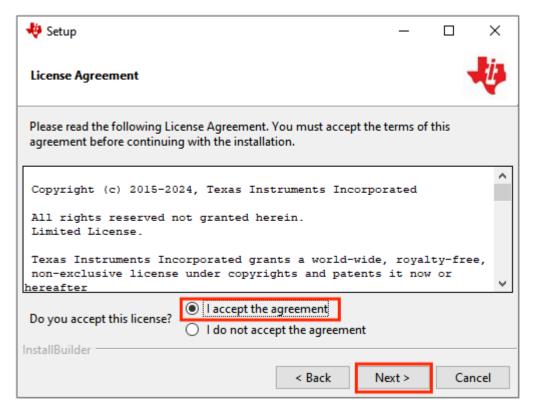
SIMPLELINK-LOWPOWER-F2-SDK — SimpleLink™ Low Power F2 software development kit (SDK) for the CC13x1, CC13x2, CC13x4, CC26x1, CC26x2 and CC26x4 devices



The SimpleLink® Low Power SDKs support the CC13xx, CC23xx and CC26xx family of products. Together, these SDKs provide comprehensive software packages for the development of Sub-1 GHz and 2.4 GHz applications including support for Bluetooth® Low Energy, Mesh, Zigbee®, Matter, Thread, 802.15.4-based, (...)

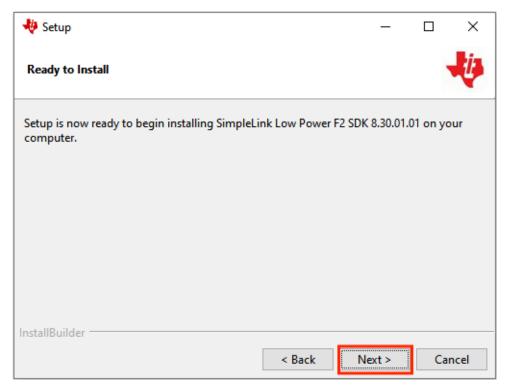

Supported products & hardware

3. Choose the target platform, in this case, Windows is selected.

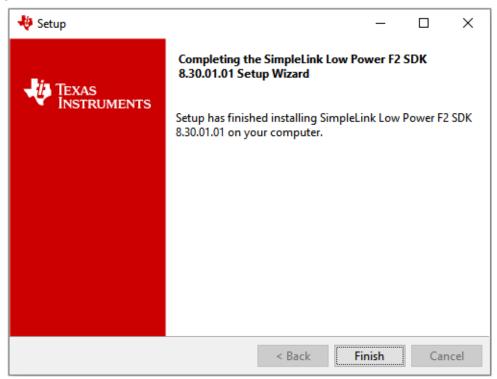


- 4. Double-click the installation package.
- 5. Click "Next".

6. Select "I accept the agreement", and then click "Next".



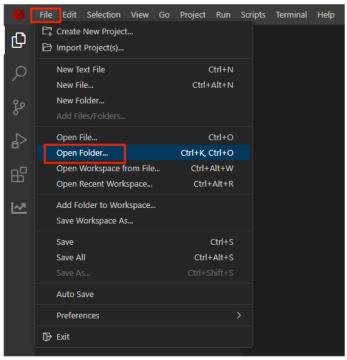
7. Choose the installation directory, and then click "Next". Make sure the installation directory does not include non-ASCII characters or spaces.



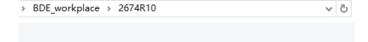
8. Click "Next", and the installation will start. Wait until the installation is complete.

9. Click "Finish".

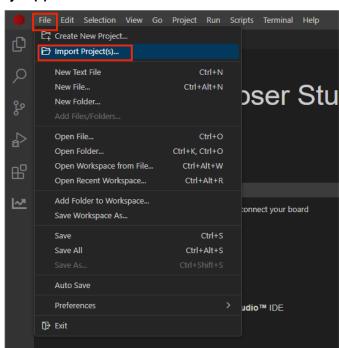
4.4. BLE5-STACK


This section describes how to use the BLE5-Stack projects with CCS.

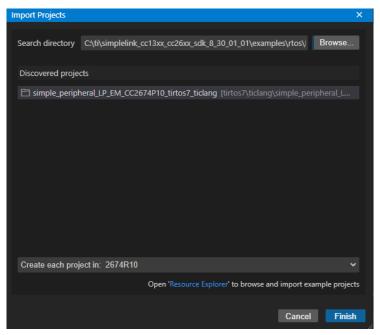
The BLE5-Stack examples are located at C:\ti\simplelink_cc13xx_cc26xx_sdk_8_30_01_01\examples\rtos\ LP_EM_CC2674P10 \ble5stack



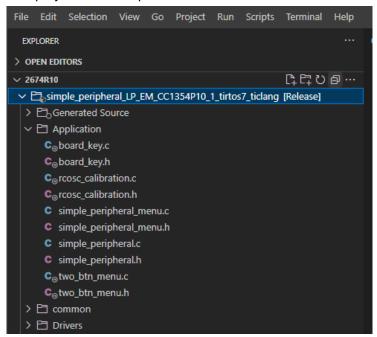
4.4.1. Import Project into CCS


- 1. Open the CCS IDE.
- 2. Go to File -> Open Folder.

3. Select a custom path as the workspace.

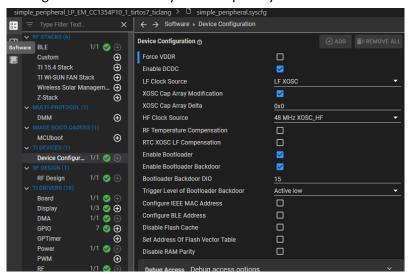


4. Go to File -> Import Project(s).

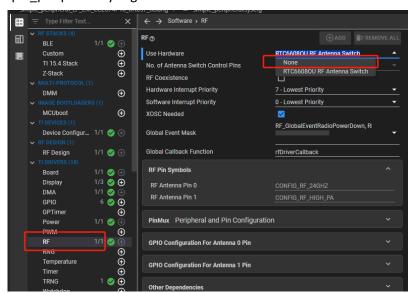


- Click "Browse", navigate to the "simple_peripheral" project folder. The default path is: C:\ti\simplelink_cc13xx_cc26xx_sdk_8_30_01_01\examples\rtos\LP_EM_CC2674P10 \ble5stack\simple_peripheral
- 6. Select the project, and click "Finish".

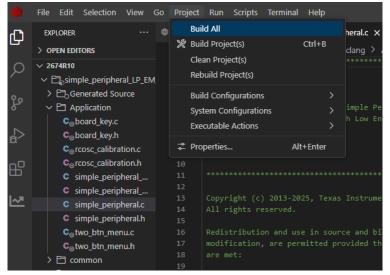
7. The "simple peripheral" project will be imported into the IDE.

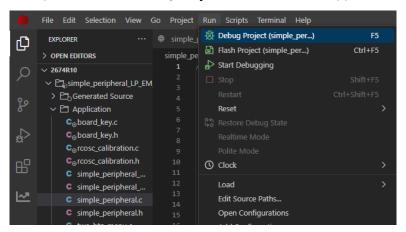

4.4.2. Modify XOSC Cap Setting

The "XOSC Cap Array Delta" parameter will impact the radio frequency offset. An inappropriate value can affect the RF performance. Follow the steps below to set the value that fits the module.

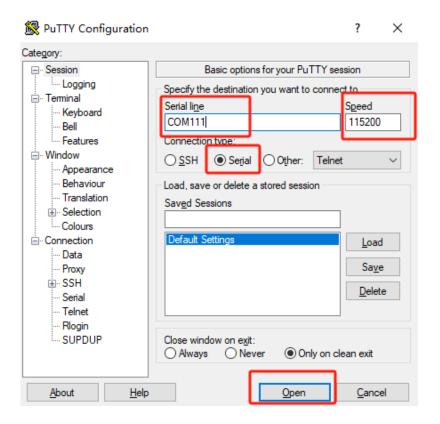

1. Open "simple peripheral.syscfg" file by double-click it.

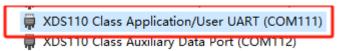
2. Select the 'Device Configuration' item. Modify 'XOSC Cap Array Delta' to 0x00.


- 3. Save the changes.
- 4. Open the file "simple peripheral.syscfg" and set the antenna selection button to none.

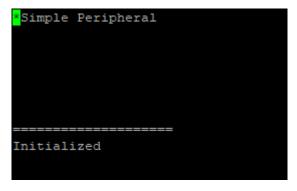

4.4.3. Build and Download Project

1. Select **Project -> Build All** to build the application project.

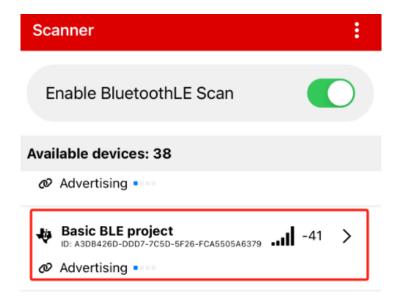

2. After building successfully, select **Run** -> **Debug Project** to download the application to the module.


4.4.4. Running the Demo

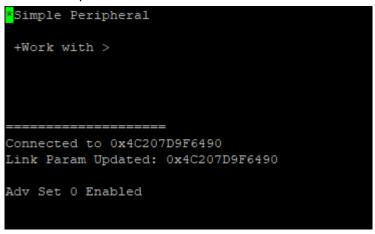
1. Open PuTTY, open the serial port with the following settings:



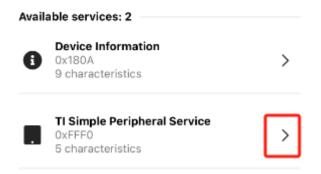
The COM number can be found in the System Device Manager:



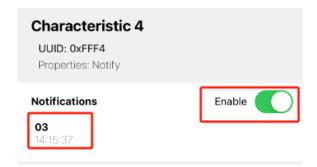
2. Debug the project and click "Continue" in CCS. The demo will begin execution. The PuTTY will display the menu as shown below:



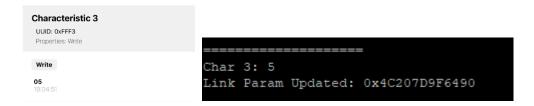
3. Open SimpleLink Connect mobile app. Click "Enable BluetoothLE Scan", and you will see that the module is advertising.



4. Click the right arrow on the right of "Simple Peripheral" item to connect to the module. After a successful connection, you will see PuTTY update the information.



5. Select "TI Simple Peripheral Service".



6. Enable the notification of "Characteristic 4", the app will receive notification sent by the module.

7. Write "05" to "Characteristic 3". PuTTY will print the write information.

4.5. Host_test Project & Btool Software

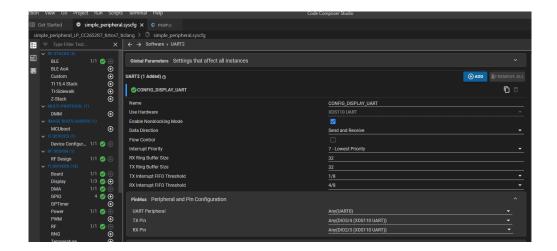
TI provides a PC tool called "btool" to help developers simplify development. Developers can use Btool to scan and connect to peripheral devices, or to send raw HCl commands.

The directory for Btool is:

C:\ti\simplelink_cc13xx_cc26xx_sdk_8_30_01_01\tools\ble5stack\btool.

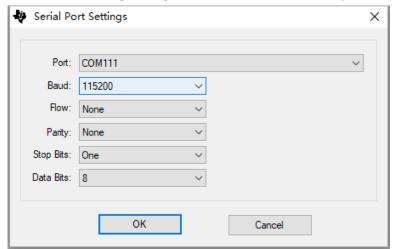
Before using Btool, the module must have the host_test application flashed onto it first.

The project directory for host_test is:


 $C:\ti\simplelink_cc13xx_cc26xx_sdk_8_30_01_01\examples\rtos\LP_EM_CC2674P10\ble5stack\host_test.$

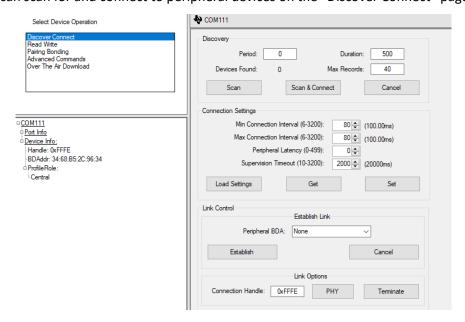
Before building the host_test project, developers should perform the additional steps mentioned in sections 4.4.2.

The module will enter DTM mode once the host_test application is flashed. Btool can connect to the module through UART interface.

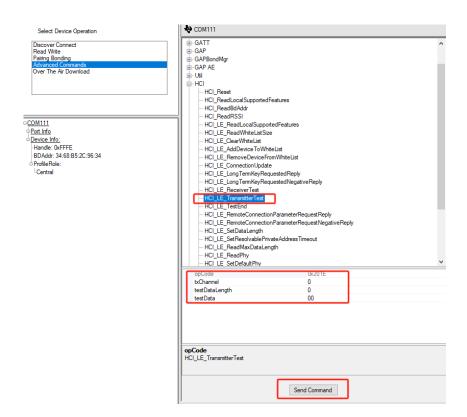

The pins used by UART can be found in the following diagram:

The following steps demonstrate how to operate Btool.

- 1. Open Btool.
- 2. Open the serial port with the following settings, and make sure the correct port is selected.



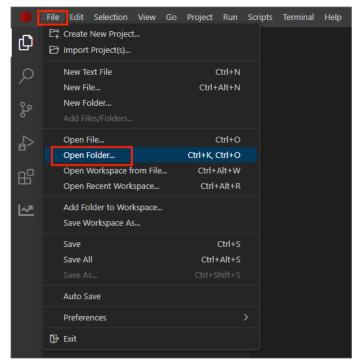
3. If the hardware functions properly, the following UART logs will be printed.


```
[1] : <Info> - 02:40:25.158
Port opened at 2024/10/22 14:40:25
[2] : <Tx> - 02:40:25.237
        : 0x01 (Command)
: 0xFC1D (HCIExt_ResetSystemCmd)
-Type
-OpCode
-Data Length : 0x01 (1) byte(s)
Type
         : 0x00 (0) (Chip Reset)
Dump (Tx):
0000:01 1D FC 01 00
[3] : <Rx> - 02:40:25.384
            : 0x04 (Event)
-Type
-EventCode
               : 0x00FF (HCI_LE_ExtEvent)
-Data Length : 0x05 (5) bytes(s)
        : 0x041D (1053) (HCIExt_ResetSystemCmdDone)
: 0x00 (0) (SUCCESS)
Event
Status
CmdOpCode : 0xFC1D (HCIExt_ResetSystemCmd)
Dump (Rx):
0000:04 FF 05 1D 04 00 1D FC
[4] : <Tx> - 02:40:25.903
             : 0x01 (Command)
               : 0xFE00 (GAP DeviceInit)
-OpCode
-Data Length
               : 0x08 (8) byte(s)
ProfileRole : 0x08 (8) (
                 Central)
AddrMode : 0x00 (0) (ADDRMODE_PUBLIC)
RandomAddr : 00:00:00:00:00:00
Dump(Tx):
0000:01 00 FE 08 08 00 00 00 00 00 00 00
[5] : <Rx> - 02:40:25.980
-xpe : 0x04 (Event)
-EventCode : 0x007
                : 0x00FF (HCI_LE_ExtEvent)
Data Length : 0x06 (6) bytes(s)
         : 0x067F (1663) (GAP_HCI_ExtentionCommandStatus)
Event
             : 0x00 (0) (SUCCESS)
Status
```

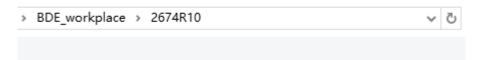
4. Developers can scan for and connect to peripheral devices on the "Discover Connect" page.

5. The "Advanced Commands" page provides a variety of HCI commands. For example, developers can send "HCI_LE_Transmitter_Test" command in the following diagram.

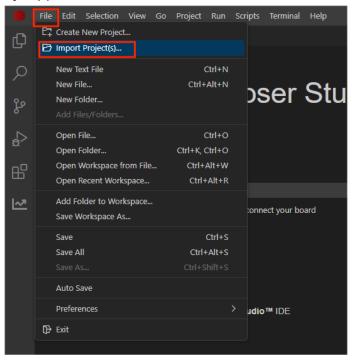
4.6. TI154STACK


TI's royalty-free TI 15.4-Stack is a complete software platform for developing applications that require extremely low-power, long-range, reliable, robust and secure wireless star-topology-based networking solutions. This section describes how to use the TI 15.4-Stack projects with CCS.

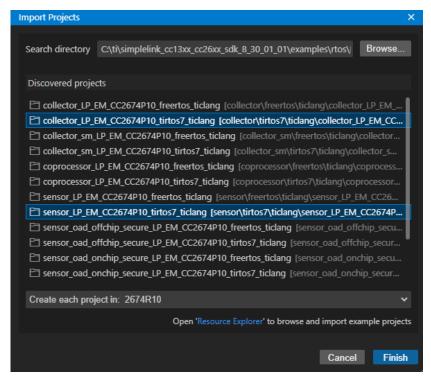
To demonstrate the TI 15.4-Stack demos, two modules are required.

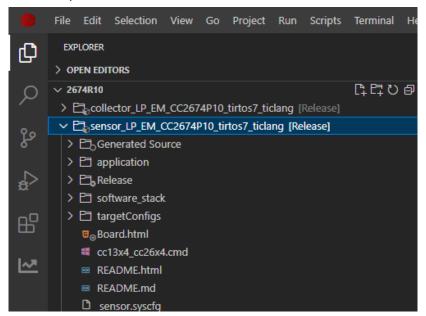

4.6.1. Import Projects into CCS

- 1. Open the CCS IDE.
- 2. Go to File -> Open Folder.



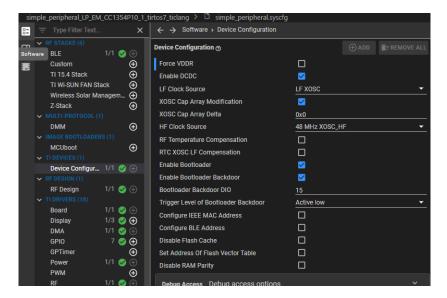
3. Select a custom path as the workspace.


4. Go to File -> Import Project(s).

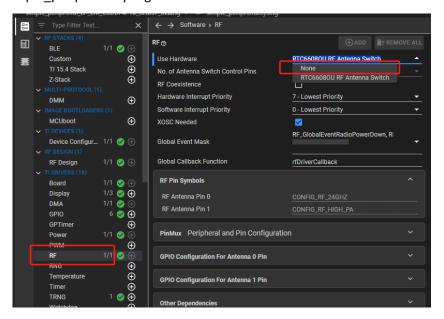

- Click "Browse", navigate to the ti154stack folder. The default path is:
 C:\ti\simplelink_cc13xx_cc26xx_sdk_8_30_01_01\examples\rtos\ LP_EM_CC2674P10\ti154stack.
- 6. Select "collector_LP_EM_CC2674P10_tirtos7_ticlang" and "sensor_LP_EM_CC2674P10_tirtos7_ticlang"

projects, then click "Finish".

7. The two projects will be imported into the IDE.

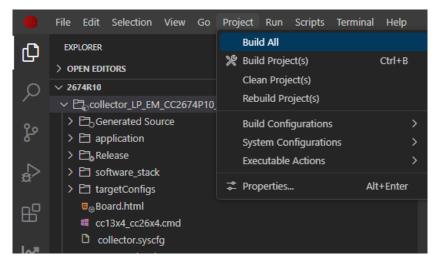


4.6.2. Modify XOSC Cap Setting

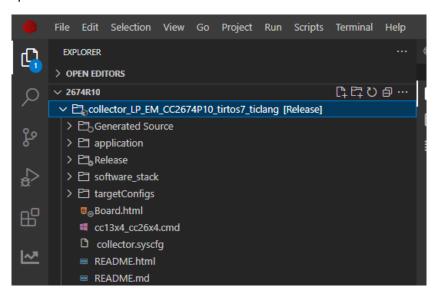

The 'XOSC Cap Array Delta' parameter will impact the radio frequency offset. An inappropriate value can affect the RF performance. Follow the steps below to set the value that fits the module.

- 1. Open "collector.syscfg" file by double-click it.
- 2. Select the 'Device Configuration' item. Modify 'XOSC Cap Array Delta' to 0x00.

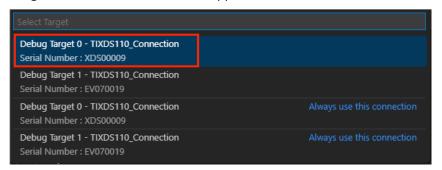
- 3. Save the changes.
- 4. Open the file "simple_peripheral.syscfg" and set the antenna selection button to none.



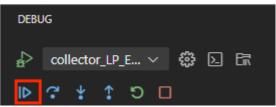
1. Similarly, modify XOSC Cap Setting in sensor.syscfg.

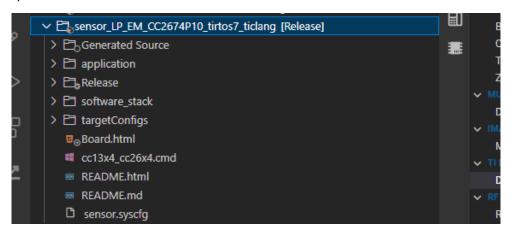

4.6.3. Build and Download Project

1. Select **Project** -> **Build All** in the toolbar menu. Both the "collect" and "sensor" projects will be built.



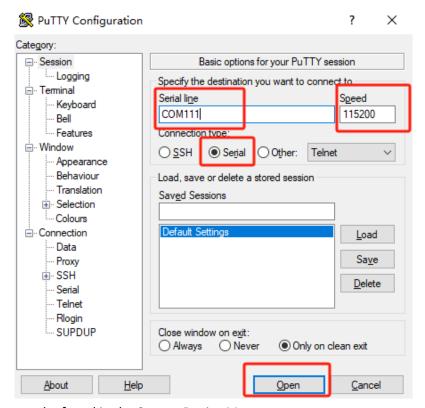
2. Select the "collector" project as the current active project by clicking the "collector" project root directory in the "Project Explorer" view.


3. Select **Run** -> **Debug** to download the "collector" application to one of the two modules.


4. If the following message occur, click "Update".

5. After the update process is finished, click "Continue".

6. Select the "sensor" project as the current active project by clicking the "sensor" project root directory in the "Project Explorer" view.


7. Select **Run** -> **Debug** to download the "sensor" application to the other module.

4.6.4. Running the demo

1. Open two instances of PuTTY. Open the correct serial ports separately using the following settings.

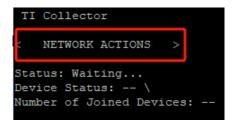
The COM number can be found in the System Device Manager:

```
XDS110 Class Application/User UART (COM111)
```

2. Reset the two modules by pressing the reset button on the BDE-XDS110 board. PuTTY will display the menu.

```
COM8 - PuTTY

TI Sensor


Press Enter for Help

< HELP >

Status: Waiting...

Device Status: -- \
Number of Joined Devices: --
```

On the collector terminal side, press the right arrow key on the keyboard twice to switch to the "NETWORK ACTIONS" menu.

4. Press the enter key on the keyboard to open the "NETWORK ACTIONS" menu.


```
TI Collector

< FORM NWK >

Status: Waiting...
Device Status: -- \
Number of Joined Devices: --
```

- 5. The "NETWORK ACTIONS" menu has three actions: "FORM NWK", "OPEN NWK", "CLOSE NWK". You can switch between these actions by pressing the left/right arrow keys.
- 6. Switch to "FORM NWK", then press the Enter key to form a TI 15.4 network. By default, the network forbids other devices from joining.

```
TI Collector

< FORM NWK >

Status: Started--Mode=NBCN, Addr=0xaabb, PanId=0x0001, Ch=0, PermitJoin=Off
Device Status: -- \
Number of Joined Devices: 0
```

7. Switch to "OPEN NWK", then press the Enter key to allow devices to join. At this time, the red LED on the collector board will blink.

```
TI Collector

< OPEN NWK >

Status: Started--Mode=NBCN, Addr=0xaabb, PanId=0x0001, Ch=0, PermitJoin=On
Device Status: -- \
Number of Joined Devices: 0
```

8. On the sensor terminal side, open the "NETWORK ACTIONS" menu and perform the "ASSOCIATE" action. After a while, the sensor will join the network created by the collector. The red LED on the sensor board will turn on.

```
TI Sensor

< ASSOCIATE >

Status: Joined--Mode=NBCN, Addr=0x0001, PanId=0x0001, Ch=0
```

```
TI Collector

OPEN NWK >

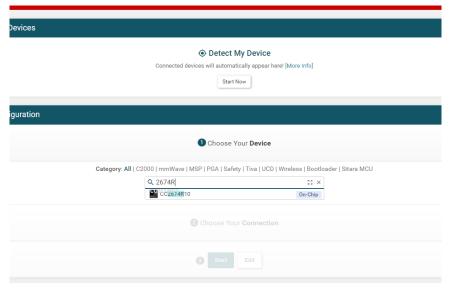
Status: Restarted--Mode=NBCN, Addr=Oxaabb, PanId=Ox0001, Ch=0, PermitJoin=On
Device Status: Sensor - Addr=Ox0001, Temp=27, RSSI=-37 \
Number of Joined Devices: 1
```

9. On the collector terminal side, press the Esc key to retun to the root menu, then switch to the "APP" menu and perform the "SEND TOGGLE" action. The red LED on the sensor board will toggle.

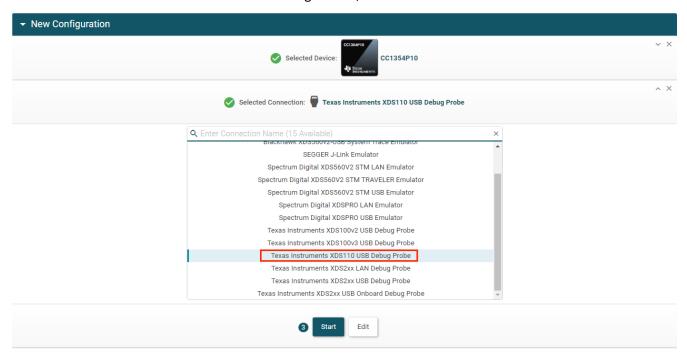
```
TI Collector

< SEND TOGGLE >

Status: Restarted--Mode=NBCN, Addr=0xaabb, PanId=0x0001, Ch=0, PermitJoin=On
Device Status: Sensor - Addr=0x0001, Temp=27, RSSI=-37 /
Number of Joined Devices: 1
```



4.7. Use UniFlash to Download Firmware

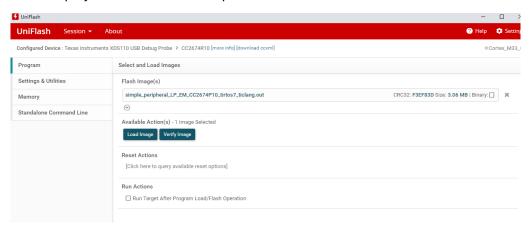
In the section above, the method to flash the firmware is through debugging in the CCS IDE.


TI provides a software tool called UniFlash, which can be used for programming on-chip flash on TI microcontrollers and wireless connectivity devices.

4.7.1. Configure UniFlash

- 1. Open UniFlash.
- 2. Select 'CC2674R10'.

3. Select "Texas Instruments XDS110 USB Debug Probe", then click the "Start" button.



4.7.2. Programming

1. Select "Program" item.

2. Select the image file prepared for programming. By default, the image file is located in the Release/Debug folder within the project folder in the workspace.

3. Click the "Load Image" button to begin programming.

Available Action(s) - 1 Image Selected

Load Image

Verify Image

4. When programming is successful, the console will display the following information.

[SUCCESS] Program Load completed successfully.

Please refer to the UniFlash quick start guide for more information about the UniFlash tool. Click the "Help" icon to open the quick start guide.

4.8. SmartRF™ Studio

SmartRF™ Studio is a Windows application that helps developers to easily evaluate the radio for all TI CC1xxx and CC2xxx low-power RF devices.

This tool can also be used for RF certification testing.

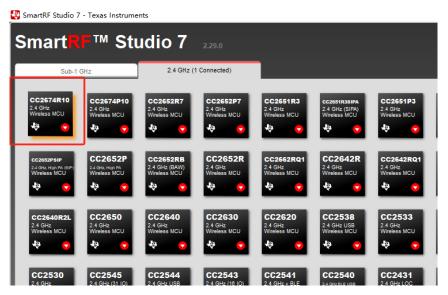
Visit the link below to download and install SmartRF™ Studio.

https://www.ti.com/tool/SMARTRFTM-STUDIO

CALCULATION TOOL

SMARTRF-STUDIO-7 — SmartRF Studio 7 application software

Supported products & hardware

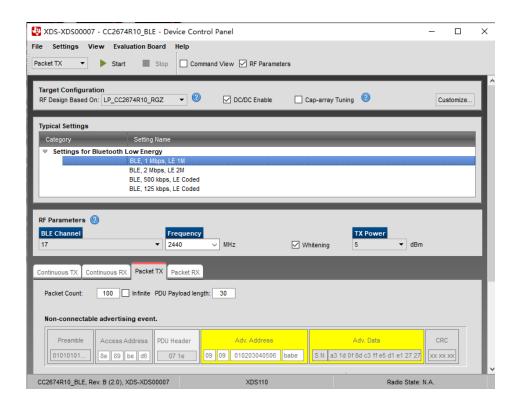


If the installer becomes locked during the download process, follow the instructions provided by TI.

🔒 smartrftm_studio-2.32.0.zip − 73596 K

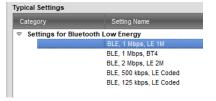
4.8.1. Connect to the Module

- 1. Connect the module to the PC using the XDS debug probe.
- 2. Open SmartRF Studio 7.
- 3. SmartRF Studio will show that one 2.4 GHz device is connected.



- 1. Double-click the 'CC2674R10' item.
- 2. Select the mode you want; in this example, the 'BLE mode' is selected.

3. After clicking OK, SmartRF Studio will open a new window called "Device Control Panel".



4.8.2. Change the Default Settings

1. Do not enable 'Cap-array Tuning'.

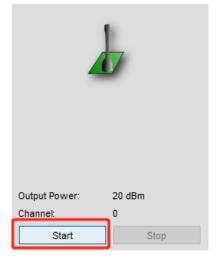
2. Select the PHY setting.

3. Select the 'BLE Channel' or 'Frequency' and 'TX Power'.

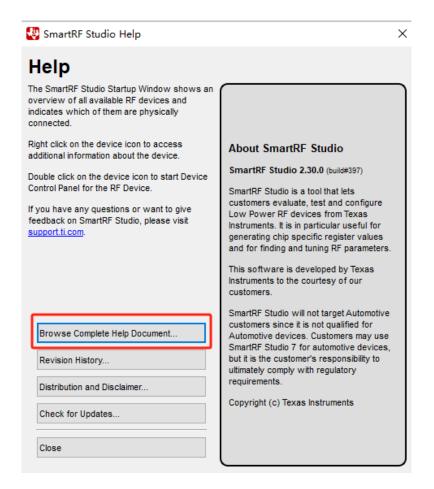
4.8.3. Perform RF Test

RF testing is divided into continuous TX/RX and packet TX/RX. The signal duty cycle is 100% when operating in continuous mode. The following steps use continuous TX as an example to demonstrate how to start the RF test.

1. Click "Continuous TX".



2. Enable or disable modulation of the transmitted signal. When the "Unmodulated" radio box is selected, the signal is a carrier wave.



3. Click "Start" to start transmitting the RF signal.

Please refer to the help document for more information about the SmartRF Studio tool. Click icon to open the "SmartRF Studio Help" window, then click the "Browse Complete Help Document…" button to access the help document.

5. Other Resources

Access more documents by visiting the TI CC2674R10 page at the link below.

https://www.ti.com/product/CC2674R10

Additionally, refer to the guides for different components for more information about the Simplelink SDK. The guides are located in the directory below:

C:\ti\simplelink_cc13xx_cc26xx_sdk_8_30_01_01\docs

For other related documentations of the module, please visit the module product page at <u>bdecomm.com</u>.

6. Ordering Information

Table 3. Ordering Information

Product Type	Orderable Part Number	Description
	BDE-MP2674R10UU0-K1	Evaluation kit 1 for module BDE-MP2674R10UU0, includes
Evaluation Kit		1x BDE-MP26-BO, 1x BDE-LPEM, 1x BDE-XDS110, 1x USB
		type C cable
		Evaluation kit 1 for module BDE-MP2674R10UN0, includes
Evaluation Kit	BDE-MP2674R10UN0-K1	1x BDE-MP26-BO, 1x BDE-LPEM, 1x BDE-XDS110, 1x USB
		type C cable

Product Type	Orderable Part Number	Description
		Evaluation kit 1 for module BDE-MP2674R10NA0, includes
Evaluation Kit	BDE-MP2674R10NA0-K1	1x BDE-MP26-BO, 1x BDE-LPEM, 1x BDE-XDS110, 1x USB
		type C cable
		Evaluation kit 1 for module BDE-MP2674R10NU0, includes
Evaluation Kit	BDE-MP2674R10NU0-K1	1x BDE-MP26-BO, 1x BDE-LPEM, 1x BDE-XDS110, 1x USB
		type C cable
		Evaluation kit 1 for module BDE-MP2674R10NN0, includes
Evaluation Kit	BDE-MP2674R10NN0-K1	1x BDE-MP26-BO, 1x BDE-LPEM, 1x BDE-XDS110, 1x USB
		type C cable
		Evaluation kit 1 for module BDE-MP2674R10UA32,
Evaluation Kit	BDE-MP2674R10UA32-K1	includes 1x BDE-MP26-BO, 1x BDE-LPEM, 1x BDE-XDS110,
		1x USB type C cable
		Evaluation kit 1 for module BDE-MP2674R10UU32,
Evaluation Kit	BDE-MP2674R10UU32-K1	includes 1x BDE-MP26-BO, 1x BDE-LPEM, 1x BDE-XDS110,
		1x USB type C cable
		Evaluation kit 1 for module BDE-MP2674R10UN32,
Evaluation Kit	BDE-MP2674R10UN32-K1	includes 1x BDE-MP26-BO, 1x BDE-LPEM, 1x BDE-XDS110,
		1x USB type C cable
		Evaluation kit 1 for module BDE-MP2674R10NA32,
Evaluation Kit	BDE-MP2674R10NA32-K1	includes 1x BDE-MP26-BO, 1x BDE-LPEM, 1x BDE-XDS110,
		1x USB type C cable
		Evaluation kit 1 for module BDE-MP2674R10NU32,
Evaluation Kit	BDE-MP2674R10NU32-K1	includes 1x BDE-MB13-BO, 1x BDE-LPEM, 1x BDE-XDS110,
		1x USB type C cable
		Evaluation kit 1 for module BDE-MP2674R10NN32,
Evaluation Kit	BDE-MP2674R10NN32-K1	includes 1x BDE-MB13-BO, 1x BDE-LPEM, 1x BDE-XDS110,
		1x USB type C cable
Module Breakout Board	BDE-MB26-BO	Breakout board with BDE-MP2674R10xx module
Interface Evaluation Module	BDE-LPEM	Launchpad evaluation module with BoosterPack interface
Debugger	BDE-XDS110	XDS110 debugger

7. Revision History

Table 4. Revision History

Revision	Date	Description
V1.0	2025-4-16	First release

8. Additional Information

a) Trademarks

Bluetooth® is a registered trademark of Bluetooth SIG, Inc.
Launchpad™ is a registered trademark of Texas Instruments.
BoosterPack™ is a registered trademark of Texas Instruments.
SmartRF™ is a registered trademark of Texas Instruments.
All trademarks are the property of their respective owners.

Important Notice and Disclaimer

The information contained herein is believed to be reliable. BDE makes no warranties regarding the information contain herein. BDE assumes no responsibility or liability whatsoever for any of the information contained herein. BDE assumes no responsibility or liability whatsoever for the use of the information contained herein. The information contained herein is provided "AS IS, WHERE IS" and with all faults, and the entire risk associated with such information is entirely with the user. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for BDE products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information.

Contact

BDE Technology Inc.

USA: 67 E Madison St, # 1603A, Chicago, IL 60603, US

Tel: +1-312-379-9589

Website: www.bdecomm.com Email: info@bdecomm.com

China: B2-403, 162 Science Avenue, Huangpu District, Guangzhou 510663, China

Tel: +86-20-28065335